

本文章已註冊DOI數位物件識別碼

探索島嶼瀕危植物-鈴木草屬的天空

doi:10.29738/NCQ.200512.0005

自然保育季刊, (52), 2005

Nature Conservation Quarterly, (52), 2005

作者/Author: 陳怡雁;彭鏡毅;許再文;蔣鎮宇

頁數/Page: 30-35

出版日期/Publication Date :2005/12

引用本篇文獻時,請提供DOI資訊,並透過DOI永久網址取得最正確的書目資訊。

To cite this Article, please include the DOI name in your reference data.

請使用本篇文獻DOI永久網址進行連結:

To link to this Article:

http://dx.doi.org/10.29738/NCQ.200512.0005

DOI是數位物件識別碼(Digital Object Identifier, DOI)的簡稱, 是這篇文章在網路上的唯一識別碼, 用於永久連結及引用該篇文章。

若想得知更多DOI使用資訊,

請參考 http://doi.airiti.com

For more information,

Please see: http://doi.airiti.com

請往下捲動至下一頁,開始閱讀本篇文獻 PLEASE SCROLL DOWN FOR ARTICLE

探索島嶼瀕危植物—

鈴木草屬的天空

陳怡雁* 彭鏡毅** 許再文*** 蔣鎭宇*

一、島嶼生物的特色

島嶼生物之所以受到生態及演化生物學者的重視,最大的原因在於島嶼的生態環境 迥異於大陸。島嶼生物長時間在隔離的狀態下生存,經環境的選汰及演化,其形態、分布及功能常不同於最初,甚至造成物種的分化。島嶼生物學的探討係由1967年E.O. Wilson和R. MacArthur發展出來的「島嶼生物地理學」開始,他們認為在一個新形成的島嶼抑或與大陸剛分離的島嶼,物種會不斷從鄰近的大陸遷徙過來,島嶼內物種的數目會受物種滅絕的速度和出現的速度影響;到了島嶼呈現飽和狀態時,每加入一個新物種就會造成一次生態變動,有些先驅物種逐漸被後到的物種所取代,這樣的模式會漸趨緩和,最後會達到穩定的動態平衡。

另外,島嶼面積大小、地形的複雜性、 距大陸塊的遠近、可用空間及地理環境都會

- * 成功大學生命科學研究所研究生、教授
- ** 中央研究院植物所研究員
- *** 特有生物研究保育中心副研究員

影響其生物相,一般島嶼生物被認爲有較低的遺傳歧異度及較高的族群間分化,更比生存於大陸的生物有較高滅絕的危機。在島嶼生物所顯現的生態特色,則有生物相的不平衡及物種易受害現象(vulnerability)。除此之外,島嶼生物一般有較高比例的特有種,島嶼生物往往由大族群分歧出來,原有族群在遷移過程中幾乎只能由最初的少數拓殖者(colonizer)決定,其經歷瓶頸效應(bottleneck)後容易喪失部分基因,某些生物在長期隔離後,因島嶼環境生態特殊,生物演化出的形態及功能常因而不同於大陸的近緣種,甚至族群間趨向生殖隔離乃至種化(speciation)。

在地質歷史上地球曾經歷過許多次的冰河期,當冰河期來臨時,地球上大量的水儲存於冰川中,導致海平面下降,使得島嶼出現陸橋與大陸塊相連,因而大陸生物有機會藉陸橋相連而進入島嶼中,當冰河撤退時,全球氣溫回升,冰川的融化使海平面大幅上升,部分隨冰河時期所拓殖來的物種因而留在這些島嶼上。現今台灣及琉球群島間存在

台灣鈴木草植株。(許再文 攝)

著許多近緣種,便是因冰河時期來臨藉由陸 橋連結交流而來的。

二、鈴木草屬植物概述

唇形科(Lamiaceae)鈴木草屬(Suzukia Kudo),為東亞島弧特有的屬,僅分布於台灣及琉球群島,本屬植物全世界僅有兩種,分別是台灣鈴木草(Suzukia shikikunensis)及琉球鈴木草(Suzukia luchuensis)。由於分布狹隘,世界自然保育聯盟(The World Conservation Union, IUCN)依據受威脅等級評估,列爲瀕臨滅絕之稀有植物。鈴木草屬植物花色紫豔,具有蜜腺,傳粉的媒介主

台灣鈴木草的花序。(許再文 攝)

要是蜜蜂等昆蟲,果實爲蒴果,主要藉由重力傳播。

台灣鈴木草於1930年由日籍學者Kudo 首先發表於熱帶農學會誌期刊(Journal of

the Society of Tropical Agriculture), 爲臺灣特有種,零星分布於中低海拔,數量 稀少,台北、官蘭、台中、嘉義、高雄、台 東、花蓮等地曾有採集紀錄。此物種爲多年 生草本,具匍匐莖;葉寬卵形,基部心形, 粗鋸齒緣,腋生疏散總狀花序;花萼鐘形, 密被腺毛;花冠筒狀,花瓣色澤紫色白色相 間,二唇,上唇直立帽狀,下唇平伸。小堅 果倒卵形。琉球鈴木草則係於1931年由 Kudo 所發表的新種,分布於日本沖繩本島、 久米島、黑島及嶼那國島等地,其中只有嶼 那國島海岸數量較豐,其餘生育地皆爲零星 分布。2000年謝宗欣教授發表該物種也分 布於台東的綠島。形態上琉球鈴木草的葉及 花冠比台灣鈴木草來得小及薄,花萼形狀也 不同,台灣鈴木草鋸齒狀明顯,琉球鈴木草 則較圓鈍。

三、身世之謎

一般瀕危物種擁有低的遺傳歧異度,鈴木草屬族群小且分布狹隘,如今現存族群數量非常少,是否已面臨滅絕危機?值得關切。鈴木草花粉傳播受限於昆蟲的飛行能力,再加上島嶼植物呈隔離狀態,島嶼間交流少,因此鈴木草屬植物族群基因交流應相當有限,族群間應該具有相當程度的遺傳分化,令人好奇鈴木草屬種化及分歧的演化歷史爲何?

鈴木草屬僅分布於台灣及琉球群島,其

中台灣鈴木草僅分布在台灣本島,而琉球鈴木草則分布於琉球群島及台灣東南邊的綠島,地理距離上綠島距台灣比起琉球群島要近得多,爲何生長於綠島的物種爲琉球鈴木草而非台灣鈴木草,十分耐人尋味。

近年來由於遺傳學、生物化學、細胞 學、分子生物學等學門迅速的發展,去氧核 糖核酸(DNA)、核糖核酸(RNA)、蛋白質 (protein) 等生物巨分子成為重要的研究對 象,分子生物技術的普遍化,使得這些巨分 子成爲研究分類群親緣關係和族群遺傳變異 的遺傳標記物,加上分子遺傳技術不斷地突 破, DNA、RNA 的變異廣泛地被研究,因此 細胞中的細胞核、粒腺體、葉綠體內的遺傳 物質變異都可提供物種親緣地理及族群遺傳 結構分析的訊息。分子遺傳技術的進步,提 供了幫助釐清生物種間與種內之族群遺傳結 構的工具,分子遺傳標記(marker)不但可顯 現族群內及族群間遺傳的變異程度,更可用 來偵測在演化支系中(lineage)所保存的演 化訊息。

筆者以葉綠體 DNA 和細胞核 DNA 的分子為標記,利用遺傳分子之變異研究物種母系、父系來源及其演化歷史。在研究中顯示,鈴木草屬比東亞其他瀕危物種遺傳歧異度來得高,推估此物種可能具有較久遠演化歷史,因而可累積較多的遺傳變異。若依據學者所估計整個葉綠體 DNA 的演化速率為每年每個鹼基序列有 10~9 個被取代或置換的機

率,估算出台灣鈴木草與琉球鈴木草之共同 祖先約距今111萬年前就分歧開來。過去地 質歷史上,琉球島弧與亞洲大陸有多次相 連,分布於大陸的祖先族群藉由多次拓殖, 可能也是造成琉球鈴木草具有高度遺傳歧異 度的主因之一。

另一造成高遺傳歧異度的可能是過去的 鈴木草屬曾經爲數量大的穩定族群,族群數 量大的物種自然擁有較多的遺傳變異,就以 現今的嶼那國島的族群來說,由於沿海棲地 環境保持良好,島上的琉球鈴木草數量豐 富、族群穩定。反觀台灣鈴木草,近年來因 棲地不斷遭破壞,導致族群數量銳減,但其 仍具有高度遺傳歧異度,各族群內基因型組 成是複合的,即從基因型的異質性

琉球鈴木草生育環境。(許再文 攝)

(heterogeneity)推測,台灣鈴木草也曾是 數量大而穩定的族群。

四、台灣鈴木草的族群分化

原始祖先經演化而產生多種不同的生物 形式,而其中的每一種形式都在所處的特殊 條件下爲求生存而做改變時,這樣的演化過 程即所謂輻射適應(adaptive radiation)。 對台灣鈴木草各族群來說,種化後爲了要適 應台灣複雜多變的環境,從靠海邊的海系族 群和近中央山脈的中海拔山系族群基因型不 同的結果推論,台灣鈴木草產生了類似輻射 適應的演化。因島嶼之隔離環境,同一島嶼

內族群間的分化主要歸因於昆蟲傳粉機制。 一般而言昆蟲很難有跨海洋之遠程傳粉,因 而島嶼間基因的交流相當有限。以台灣鈴木 草其棲地爲中低海拔山區而言,自然環境的 阻隔效應大,花粉能傳播的距離會因地理阻 隔而降低。從遺傳結構來看,海系族群與山 系族群是有高度分化的,此原因可能在鈴木 草屬祖先進入台灣種化後因環境的改變,部 分族群慢慢往高海拔移動而演化成山系族 群,海系族群與琉球鈴木草在母系遺傳方面 相近,且保有相當的祖先型遺傳基因。可推 論台灣鈴木草山系族群是由海系族群演化而 來。

五、演化路徑

從東亞島弧地質歷史事件來看,第四紀 的冰河期可能是造成鈴木草屬現今分布型式 之最大因素,由葉綠體 DNA 所建構親緣樹狀 圖來說,可推估台灣鈴木草與琉球鈴木草兩 物種來自共同祖先,其中琉球鈴木草具有較 古老之基因型,演化路徑的推論爲冰河時期 陸橋形成時,台灣鈴木草與琉球鈴木草之共 同祖先都是由大陸遷移而來,一支線向東往 琉球群島拓散,另一支線往南方從台灣東北 角三貂嶺附近地帶進入台灣,當兩族群有了 地理上隔離之後,加上環境的差異,很容易 進一步產生生殖隔離,接下來便是走向種化 的階段。另外,綠島的琉球鈴木草是由嶼那 國島拓殖而來,利用分子時鐘(molecular clock) 估算嶼那國島琉球鈴木草與綠島族群 之分歧時間,大約在93萬年前,此爲另一個 獨立拓殖事件。

六、鈴木草屬的保育

長期以來,由於自然或人爲因素,許多 具有學術或經濟價值的生物遭受嚴重的破壞,族群數量急遽減少,許多本土生物處於 受威脅或瀕臨滅絕的危機之中。然而,一個 物種的消失,往往又會導致另外一些生物的 生存危機,有鑑於此,將稀有生物的保育列 爲重點研究項目,踏實施行保育工作是需要 的。

整體來說鈴木草屬植物之遺傳變異度是較大的,從兩種鈴木草之遺傳結構,可推論族群曾受到冰河時期遷移及種化的歷史事件,由於其是一較古老的物種,存在時間長久,累積較多的遺傳變異,由族群的遺傳歧異度來看,鈴木草仍存在拓張的潛力。

鈴木草爲匍匐性生長,在同一族群中有 時不容易辨認是否爲同一個體,因此很難估 計在一地區族群的個體數量,研究紀錄曾指 出在琉球嶼那國島的鈴木草數量較豐,沿海 沙地都能見到,族群動態較穩定,而分布於 台灣地區中低海拔的台灣鈴木草,近年來因 過度開發,棲地破壞及破碎化,族群量已相 對減少,族群量的持續降低易導致近親交配 及喪失遺傳多樣性,甚至滅絕,特別是台灣 的海系族群,過去曾有採集紀錄的地方例如 東部沿海貢寮、大里、西帽山等地已不復

左圖:琉球鈴木草果實。(許再文 攝)

琉球鈴木草植株。(許再文 攝)

見,即爲明例。

鈴木草對於環境的適應能力良好,在台灣導致數量稀少的最主要因子還是棲地破壞,因此對於像鈴木草這類瀕危物種,保護棲地、維持生物的有效族群數量,使其能慢慢拓殖來恢復原有遺傳歧異度的工作,應該是我們最該去正視的,但此工作也非一蹴可幾,必須妥爲規劃、不斷修正,並持之以恆,才能有所改善。除此之外,保育的觀念也要落實,從立法、行政、教育上積極推動各項措施,乃是保育鈴木草屬植物的重要課題。