陳柱中^{1,2} 李達源³ 莊愷瑋^{4,*}

摘要

陳柱中、李達源、莊愷瑋。2022。比較不同模式耦合溫度變化與農地變異模擬結球萵苣的 生長。台灣農業研究 71(1):49-72。

結球型萵苣 (Lactuca sativa L.) 是台灣秋冬季出口的指標蔬菜作物,由於植株結球的表徵特性易受夏季高 温限制,所以在台灣的主要栽培季節固定從秋末至隔年晚春;就植株生長過程,已展開外葉是光合產物的主 要供源,其葉球是積儲也是生產標的,外葉生長表現將是主導葉球產量的首要栽培管理指標。線性 (LIN)、 Gopertz (GOP) 和 Logistic (LOG) 模式是使用最普遍的生長模式,因應不同作物生長特性之差異,生長模式的 最佳化是提升智慧農業的作物栽培管理效益所不可或缺。本研究依據相對葉生長率 (relative leaf-growth rate; RLR) 和相對生長速率 (relative growth rate; RGR) 之定義為建構結球莴苣生長模式的理論基礎,以 LIN、GOP 和 LOG 模式套配地上部乾重和外葉面積的生長曲線;並考慮產期溫度變化和農地變異,提出模式耦合程序 改善不同期作温度差異和不同田區環境差異造成的模擬預測偏差。本研究的試驗區位於雲林縣二崙鄉和麥寮 鄉,試驗田區地號包括:二崙鄉油車段 427 號和公館段 382 號、麥寮鄉山寮段 474 號和 550 號;於 2017 年 和 2018 年在 427 號與 382 號田區各進行 1 期試驗,於 2017 年在 474 號和 550 號田區各進行 1 期試驗,共彙 集 6 組結球萵苣的試驗資料供模式套配評估與驗證。結果顯示,LIN、GOP 和 LOG 模式皆適用於描述外葉面 積和地上部乾重的生長曲線,但各模式的適配性可能因期作氣候及田區環境差異的影響而有差異,套配模式 估算的參數 a 和 b 不僅可供說明生育期間 RGR 和 RLR 的變動趨勢,而且可用於溫度耦合方程式 a(T) 和 b(T) 評估季節性溫度差異對植株生長速率的影響,並估算出耦合參數 a' 和 b'; 再由溫度耦合方程式結合特定田區 (S)的植株生長資料,可估算出耦合參數 c'。依據3種模式的定義代入耦合參數值:a'、b'及 c',即可獲得各 模式同時耦合溫度變化及農地變異的生長模擬函數: Fs(t | a', b', c')INN、Fs(t | a', b', c')COP 和 Fs(t | a', b', c')COP 和 Fs(t | a', b', c')COP 和 Fs(t | a', b', c')COP の Fs(t | a', b', c')COP 0Fs(t | a', b', 耦合模擬結果顯示,相較 LIN 和 GOP 模式,以 LOG 模式耦合模擬外葉面積和地上部乾重在生育期後段的預 測準確度高,較有利準確推估最適採收期與最終收穫產量,若以耦合程序的操作及應用性考量,以普遍適用 的 LIN 和 GOP 模式可被優先選擇。

關鍵詞:生長分析、模式耦合、線性模式、Gopertz 模式、Logistic 模式。

前言

當前台灣推動智慧農業 (smart agriculture) 的策略包括3大面向:以跨域智農聯盟 推動關鍵技術的開發應用、整合資通訊技術 提供多元化數位農業服務、以互動科技創新 產銷溝通平台,將引領未來台灣農業朝向「效 率、安全、低風險」的發展目標 (Chen & Yang 2017);由行政院農業委員會主導的智慧農業 相關計畫,也定位在智慧生產與數位服務2大 主軸,被優先選定的推動項目中屬於作物栽培 類的包括:蝴蝶蘭、種苗、菇類、稻作、茶、 毛豆、鳳梨和結球萵苣等 (Yang *et al.* 2016)。

投稿日期:2021年8月31日;接受日期:2021年11月15日。

^{*}通訊作者:kwjuang@mail.ncyu.edu.tw

¹國立台灣大學農業化學系博士班研究生。台灣台北市。

² 農委會農業試驗所農業化學組副研究員。台灣 台中市。

³國立台灣大學農業化學系教授。台灣台北市。

⁴國立嘉義大學農藝學系教授。台灣嘉義市。

結球萵苣是被列入智慧農業優先推動項目的代 表性外銷農產品之一,農委會自2002年開始 辦理「外銷結球萵苣生產及採後處理技術示範 輔導」計畫,已建立有效的生產及運銷模式, 更積極輔導農民團體設置結球萵苣外銷生產專 區,主要集中在雲林縣麥寮、崙背、二崙、褒 忠等鄉,每年11月至翌年3月為盛產期,外 銷市場以鄰近日本為主,至2021年台灣外銷 需求的結球萵苣生產目標面積達 800 ha、產量 目標達 21,000 Mg (Chen & Wang 2021)。因應 智慧農業的發展趨勢,未來國內結球萵苣生產 栽培技術的智慧化管理勢在必行,現行智慧農 業的作物生產管理技術包括:遙測技術 (remote sensing; RS)、全球定位系統 (global positioning system; GPS)、地理資訊系統 (geographic information system; GIS)、專家系統 (expert system; ES)、決策知識系統及大數據分析等軟 硬體設施 (Chen & Yang 2017), 智慧化的栽培 管理就是運用這些軟硬體技術,即時監控現地 農作生產過程,並連結土壤速測、病蟲害監測 和氣象預測模擬的整合評估分析,以供管理決 策之依據 (Saiz-Rubio & Rovira-Más 2020)。

以田間作物栽培和產銷調節為需求的智慧 化管理,必須先經由作物生長模式提供植株生 長過程的精準模擬和正確推估,以供決策知識 系統提出預測結果的比對分析和評估 (McCown et al. 1996; Jones et al. 2001, 2003), 目前既有 不同類別作物之生長模式經模組化格式 (modular format),已被整合開發出便利使用者操 作的作物系統模式 (crop system model) (Jones et al. 2017; Hoogenboom et al. 2019; Muller & Martre 2019)。因此,作物模式的開發已不再 只是概念模型的評估研究,必須兼顧理論演算 與更新監測數據的修正,可被直接應用於田間 生產管理及改善栽培技術的模擬驗證,以模擬 推估出可靠的量化參數代表植株生長過程的變 異;若這些生長變異的原因來自品種、栽培管 理或氣候條件,則推估模擬所得之量化參數便 可供品種選拔、栽培技術或耕作制度的調整依 據和參考建議 (Parenti et al. 2021)。考慮目前 台灣結球萵苣產業發展所需,選定既有品種和 目前已具經濟規模之慣行栽培技術和耕作制 度,依據代表性產區的田間生產紀錄,建構出 穩定適用的生長模式,即可供後續農地田區規 劃、栽培技術、產期調節和產量預估等田間生 產程序的決策依據。

綜觀現有應用於田間試驗與栽培管理的作 物生長模式,可略分2類:機制型和經驗型。 機制型模式的應用需先假設植株生長過程吻合 特定生長參數組成之時間函數,將植株生長試 驗的紀錄資料套配上機制型模式,依不同試 驗條件與栽培技術的植株生長紀錄,可估算出 生長參數的差異,說明不同生長條件與處理變 因對植株生長過程的影響 (Paine et al. 2012; Koester et al. 2014; Weraduwage et al. 2015; de Bem et al. 2018)。經驗型模式以優先選取 對植株生長紀錄適配性最佳之時間函數,再經 試驗條件和栽培技術相近但不同試驗來源的資 料進行驗證,可供特定栽培系統監測植株生長 趨勢、控管生長變異及預測產量動態之用 (Tei et al. 1996; Shimizu et al. 2008; Fraile-Robayo et al. 2017; Chen et al. 2019)。為兼顧作物生 長模式能應用於評估生長變異、優化生產制度 和改善栽培技術,又能對生長趨勢具有準確的 預測效力,結合機制型和經驗型模式的模式耦 合 (models coupling) 是常被使用的策略,模 式耦合的用途多在整合多重機制和變因的影 響,常用的耦合方式:合併 (combination)、嵌 入 (embedding) 和轉換 (transformation), 合併 可將2種以上模式重組 (Mischan et al. 2015; Fernandes et al. 2017),嵌入可將主模式之參 數以次模式導入,再新增變因和參數 (Boote et al. 2013; Tsakmakis et al. 2017; Morrison & Cunha 2020; Beyene et al. 2021; Shahhosseini et al. 2021),轉換可將主模式之參數導入不同 維度或資料類型的轉換函數 (López-Cruz et al. 2004; Roux et al. 2014; Babcock et al. 2016; Siad et al. 2019)。目前,作物模式的發展趨勢 是以程序基礎的模式化 (process-based modeling; PBM) 概念為主流,依據生理機制的反應 原理和作用過程,經最佳化的模式耦合程序, 將影響植株生長的不同因子導入 (Goudriaan & van Laar 1994; Buck-Sorlin 2013), 發展出可用 於整合涵蓋品種、環境和管理等多元變因之栽 培系統模式 (cropping system model; CSM),例 如 Decision Support System for Agrotechnology

Transfer (DSSAT) 系統 (Jones et al. 2003; Hoogenboom et al. 2019)。

生長分析 (growth analysis) 是傳統作物選 育品種、改善栽培技術或提升田間生產管理效 率的必備程序,先設計不同背景環境和處理條 件的田間試驗,經生長分析說明影響植株生長 變異的因素,再藉以評估育種效益及改善栽培 管理的策略。所謂生長分析就是檢查植株生長 表現的數值變化,由觀測資料計算代表植株生 長反應的指標,藉以評估造成生長變異及影 響反應速率的機制或關鍵因素,這些指標包 括:相對生長率 (relative growth rate; RGR)、 相對葉生長率 (relative leaf-growth rate; RLR)、 葉面積比 (leaf area ratio; LAR) (Radford 1967)、 淨同化率 (net assimilation rate; NAR) (Williams 1946)、葉面積指數 (leaf area index; LAI) (Watson 1958) 和收穫指數 (harvest index; HI) (Bhatt 1976) 等,這些生長分析指標也是開發 作物生長模式的理論起源和假設基礎 (Briggs et al. 1920a, 1920b; West et al. 1920)。若以植 物行光合作用產生碳水化合物代表植株的生長 反應,光合產物分配累積之生物量 (w) 即表示 生長反應過程的終點表現 (endpoints),相對生 長速率 (RGR) 是生物量累積速率的有效指標, 可精確說明光合產物的生成效率:

$$RGR = 1/w \cdot dw/dt , \qquad (1)$$

其中 t 表示生長時間。再者,植株葉片承載光 照面積是直接影響光合產物生成量的關鍵因 素,葉片伸展面積擴大會改變光合產物的生成 效率、分配與累積,相對葉生長率 (RLR) 是 葉面積 (A) 擴大速率的指標:

$$RLR = 1/A \cdot dA/dt , \qquad (2)$$

解析 RLR 對應 RGR 的連動關係,即可說明植 株光合產物分配與累積的生理調節機制 (Potter & Jones 1977)。若假設 RGR 和 RLR 隨時間改 變的趨勢分別為時間 t 的函數 f_w(t) 與 f_A(t),式 (1) 和式 (2) 可分別被改寫成式 (3) 和式 (4):

$$\ln(w) = \int f_w(t)dt$$
 (3)

和

$$\ln(A) = \int f_A(t)dt , \qquad (4)$$

將生物量和葉面積的試驗資料取對數轉換後套 配式(3)和式(4),即可建構出對數化生物量 和葉面積的生長模式 ln[w(t)] 和 ln[A(t)]; 換 言之, $f_w(t)$ 和 $f_A(t)$ 分別是對數化生物量和葉 面積生長模式的切線斜率。生長分析之其他指 標皆可依定義 (Fakorede & Mock 1980),由 式(1)-式(4)推演成時間的函數關係,供說明 生長過程植株生理機制的調節作用 (Tei et al. 1996; Shimizu et al. 2008; Weraduwage et al. 2015; Fraile-Robayo et al. 2017)。上述依據 RGR 及 RLR 建構生物量和葉面積生長模式的 過程,如何選擇動態趨勢函數 $f_w(t)$ 與 $f_a(t)$ 是 影響生長模式可靠性之關鍵 (Pommerening & Muszta 2015), 眾多影響植株生長速率的因素 造成 RGR 和 RLR 的計算偏差 (Hoffmann & Poorter 2002), 並影響選擇 f_w(t) 與 f_A(t) 的適 用性。Rees et al. (2010) 指出 RGR 顯著受植 株大小的變異性所影響,並提出以葉面積和葉 乾重的回歸校正模式, Gibert et al. (2016) 就 以總合分析 (meta analysis) 討論植株個體發育 階段 (ontogenetic stage) 不同形態和生理特徵 對生長速率的影響,而 Gent (2017) 在溫室萵 苣的試驗研究強調,RGR 與日照、氣溫、根 溫和養分濃度等環境因子顯著相關。因此,選 擇不同 RGR 及 RLR 的動態趨勢函數對建構作 物生長模式之差異性和適用情境,是必須仔細 比較和深入探討的議題。

目前,探討改善結球萵苣生長模式的應用 性與優化模式參數的相關研究仍不斷被提出, Moriyuki *et al.* (2018)為擴充生長模式在萵苣 生產管理的應用性,提出將收益模式導入生長 模式的計算模組以回饋調校最佳化的生產管理 參數; Chen *et al.* (2019)考慮日照輻射和氣溫 為影響葉球 (leafy head)產量的主效因子,以 累積日輻射量和日均溫為自變量,經線性回歸 (linear regression) 建構經驗型結球萵苣的產 量模式; Carini et al. (2020a, 2020b) 以不同 類型模式套配萵苣產量試驗資料,依據模式化 參數的差異,比較說明不同品種和產期的產量 差異,並加以討論不同模式的適用性;Breure et al. (2021) 考慮土壤性質的空間變異造成田 間萵苣植株的生長差異,以線性和線性混合 (linear-mixed) 模式導入土壤性質的空間變異 性,建構萵苣葉球的生長模式。至今,仍較少 研究以植株生理調節機制為基礎 (Bindraban 1999; Boote et al. 2001; Yin et al. 2003; Boote et al. 2013),提出優化模式參數的估算和提升 萵苣產量預測的準確度;因為作物生產收益來 自有經濟價值的收穫部位,並非光合產物總量 愈多就愈有利於生產收益,以作物生產管理為 目標建構的生長模式,必須考慮最佳化的光合 產物分配調節才能有效改善生產收益的評估 效果 (Asseng et al. 2017; Fraile-Robayo et al. 2017) •

於前期研究中 (Chen et al. 2021),本團隊 已針對台灣結球萵苣的代表性田間生產系統, 以生長分析和模式化評估說明結球萵苣的生長 變異與季節性溫度變化的關聯,並指出外葉為 光合產物的主要供源 (source),而內葉捲曲生 長並累積生物量形成葉球是光合產物分配的 主要積儲 (sink)。本研究仍依結球萵苣的結球 生理特性為基礎假設 (Scaife 1973; Liao et al. 1993; Jenni & Yan 2009),將地上部生物量(乾 重)的 RGR 和外葉面積的 RLR 分別導入不同 類型的動態趨勢函數 f_w(t)與 f_A(t),藉以推演 發展出地上部乾重和外葉面積的生長模式;並 考慮季節性溫度變化和不同田區農地變異,提 出可行的模式耦合程序,以期改善不同期作溫 度差異和田區特定環境條件造成植株生長的模 擬偏差。

材料與方法

試驗區與調查資料

本研究試驗區位於雲林縣二崙鄉和麥寮 鄉,試驗田區地號在二崙鄉境內的油車段427 號和公館段382號,以及麥寮鄉境內的山寮 段474號和550號;油車段427號田區屬粘 板岩老沖積土的二林系土壤,公館段382號 田區屬粘板岩老沖積土的員林系土壤,山寮 段474號和550號田區屬砂頁岩及粘板岩混 合沖積土的下崙系和番薯厝系土壤。本研究 分別於2017年和2018年在427號與382號 田區各進行1期試驗,於2017年在474號和 550號田區各進行1期試驗,共彙集6組試驗 資料,試驗期程如表1所示。各組試驗期作間 之氣象資料取自中央氣象局網站的觀測資料 查詢系統(https://e-service.cwb.gov.tw/Histo-

		Date (yr	Temperature (°C)				
Dataset	Site (No.)	Transplanting	Harvest	T_{mf}^{z}	$T_{ml}^{\ y}$	T _m ^x	T-index ^w
Modeling							
M1	382	2017/02/06	2017/03/29	16.1	19.9	17.9	21.7
M2	474	2017/11/13	2018/01/04	21.5	17.5	18.9	14.8
M3	427	2017/12/06	2018/02/02	16.6	16.0	16.5	15.9
M4	550	2017/12/16	2018/02/13	16.8	13.0	15.8	12.0
Validation							
V1	427	2017/01/27	2017/03/21	17.2	19.4	17.6	19.8
V2	382	2018/01/19	2018/03/15	16.4	19.5	16.9	21.0

表 1. 彙集本研究 6 組結球萵苣試驗資料之試驗區 (427、382、474 及 550 號)、栽培日程及溫度指標。 Table 1. Summary of experimental sites (No. 427, 382, 474 and 550), cultivation dates, and temperature indexes for 6 datasets of iceberg lettuce used in the study.

^z Mean temperature of the first 2 wk after transplanting.

^y Mean temperature of the last 2 wk before harvest.

^x Mean temperature of the period from transplanting to harvest.

^wT-index = $T_m + (T_{ml} - T_{mf})$.

ryDataQuery/index.jsp),經查閱下載雲林縣二 崙測站 (23.4067°N, 120.4089°E) 和崙背測站 (23.7555°N, 120.3189°E)的月平均、最高和最 低溫度及累積降雨量紀錄,再與嘉義市嘉義測 站 (23.4959°N, 120.4329°E) 的月累積日照時 數紀錄,彙整如圖1。各試驗區栽種結球萵苣 品種皆為「常利6號」,種子來源為合歡農產 有限公司。萵苣植株的生長紀錄項目包括:葉 數、葉面積和植株各部位(根、莖、葉)之乾、 鮮重,於定植後約每7-10天(d)從各田區隨機 採集 5-6 棵植株 (plt),量測記錄各項目。於可 明確分辨葉球之定植後天數 (days after transplanting; DAT),分開記錄展開外葉面積和葉 球捲曲內葉面積,將田間採集之樣本植株由最 外葉依序剝下,至葉片開始互相交疊、葉片中 肋向植株中心軸彎曲目葉面未完全展開者,視 為葉球捲曲內葉。再將植株依序取下的每一葉 片平攤置於桌上型葉面積分析儀 (LI-3100C, LI-COR Inc., Lincoln, NE, USA), 經掃描量測 出葉面積;捲曲內葉無法攤平者,先行以解剖 刀自葉柄處延中肋葉脈切開,使葉面能平鋪掃 描面板以利量測面積。

本研究對各田區結球萵苣的生長分析和模 式化評估使用之生育調查資料,參考行政院農 業委員會農業試驗所執行 2017-2018 年科技計 畫 (106 農科 -18.1.6-農 -C1、107 農科 -14.2.6-農 -C1) 已公開之研究報告,並與計畫執行單 位之研究人員合作執行原始資料的彙整分析, 將計畫相關細部紀錄引述於本研究中,為供讀 者可便於確認和沿用本研究開發之模式參數, 將上述 6 組試驗資料的植株生長曲線紀錄數據 列表於附錄 1 和附錄 2。

作物生長模式

本研究依式 (1) 和式 (2) 定義, 導入光合 產物分配的生理調節機制,將結球萵苣生長過 程累積增加的外葉面積和地上部乾重分別對應 為光合產物的主要供源和積儲,且參酌多數研 究報告提出之共通建議 (Tei *et al.* 1996; Shimizu *et al.* 2008; Fraile-Robayo *et al.* 2017; Carini *et al.* 2020a, 2020b): 萵苣生長曲線的 特徵是初期生長速率較慢,之後會逐漸遞增且 顯著加快再緩慢遞減,近似 S 形曲線 (sigmoid curve)。因此,提出以下描述 RLR 和 RGR 變動趨 勢的 3 種時間函數 f(t)_{LIN}、f(t)_{GOP} 和 f(t)_{LOG}:

$$f(t)_{LIN} = a - bt$$
 (5)

$$f(t)_{GOP} = a \exp(-bt)$$
 (6)

圖 1. 結球萵苣試驗資料的生長期間每月之平均溫度、日照時數和累積降雨量。

Fig. 1. Monthly average temperature, daylight hours, and accumulated precipitation during the growth periods for the experimental datasets of iceberg lettuce.

$$f(t)_{LOG} = b\{a - \exp[F(t)]\}$$
, (7)

其中參數 a 和 b 與主導 RLR 或 RGR 變動趨勢 的生理調節機制有關,受氣候因素或系統性栽 培條件所影響,F(t) 代表對數化生長模式:葉 面積 ln[A(t)] 或乾重 ln[w(t)]。依式 (3) 和式 (4) 之定義,分別代入式 (5)、式 (6) 和式 (7), 對應積分式求解如下:

$$F(t)_{LIN} = (-b/2)t^2 + at + c$$
 (8)

$$F(t)_{GOP} = (-a/b) \cdot \exp(-bt) + c \qquad (9)$$

和

 $F(t)_{LOG} = \ln \{ a / [1 + \exp(-c) \cdot \exp(-bt)] \}$, (10)

其中參數 c 為積分式的邊界條件,與各試驗區 的特定環境條件有關,可由試驗資料套配模式 的外插截距求得。

上述式 (9) 和式 (10) 分別稱為 Gopertz (GOP) 和 Logistic (LOG) 模式,兩者皆為 S 形 曲線,是目前最常被應用的生長模式 (Zeide 1993);LOG 模式為自催化反應 (autocatalytic reaction)函數,反曲點左右對稱;GOP 模式曲 線的反曲點左右不對稱,左端斜率遞增速率比 右端遞減速率快 (Amer & Williams 1957; Richards 1959);式 (8) 稱為二次線性模式 (LIN), 針對 RLR 或 RGR 變動趨勢缺乏相關理論機 制,或試驗資料的生長曲線形態特殊時,是可 廣泛通用的模式類型,也是建構簡易經驗型模 式為目標的優先選擇 (附錄 3)。

模式耦合的程序設計

本研究考慮現行台灣結球萵苣生產系統的 環境變因和栽培條件,可將植株生長變異歸因 於季節性的溫度變化和不同田區栽培管理的農 地變異,依式(8)、式(9)和式(10),假設參數 *a*和 *b*與栽培期間的溫度變化有關,而參數 *c* 代表各田區農地管理差異影響植株生長的反應 基線(baseline)。參數 *a*和 *b*可分別以溫度指標 (T-index; T)的線性函數 *a*(T)和 *b*(T)表示如下:

$$a(T) = \alpha_a + \beta_a T + \gamma_a T^2$$
(11)

和

$$b(\mathbf{T}) = \alpha_b + \beta_b \mathbf{T} + \gamma_b \mathbf{T}^2 , \qquad (12)$$

其中各項係數 $a_a 、 \beta_a ~ \gamma_a 和 a_b \land \beta_b ~ \gamma_b$ 的估算, 可由4組模式化試驗資料套配生長模式 [式 (8)、 式 (9) 和式 (10)] 所估算的參數 $a \ \pi b$ (表 2), 對應各組資料的溫度指標 T-index (表 1),以 線性回歸分析求出各項係數。選取特定田區 (S) 將其試驗期間的 T-index = Ts 代入式 (11) 和式 (12),計算出 $a(Ts) \ \pi b(Ts)$,即為考慮 季節性溫度變化的耦合參數 $a' = a(Ts) \ \pi b' = b(Ts)。$

參數 c 的耦合模擬是依 3 種模式類型 [式 (8)、式 (9) 和式 (10)] 將 a' 和 b' 代入,使代 表田區 S 的耦合模擬函數可改寫如下:

 $F_{s}(t|a', b')_{LIN} = (-b'/2)t^{2} + a't + c$ (13)

$$F_{s}(t|a', b')_{GOP} = (-a'/b') \cdot \exp(-b't) + c(14)$$

和

$$\ln[O_{\rm s}/(a' - O_{\rm s})] = a' b' t + c , \qquad (15)$$

其中 $O_s = \exp[F_s(t|a', b')_{LOG}]$ 。下一步,將田區 S 的葉面積或乾重生長紀錄資料對數化 { $\ln[w_s(t_i)]$ 或 $\ln[A_s(t_i)]$,並以 $L_s(t_i)$ 表示,對應式 (13)、 式 (14) 和式 (15) 左側的 $F_s(t \mid a', b')$ 項代入 $L_s(t_i)$,依 3 種模式可分別計算生長曲線的每個 紀錄時間點 t_i 對應的參數 c_i ,表示如下:

$$c_{i \text{ LIN}} = L_{\text{s}}(t_{i}) - [(-b'/2)t_{i}^{2} + a't_{i})] \cdot (13a)$$

$$c_{i \text{ GOP}} = L_{s}(t_{i}) - [(-a'/b') \cdot \exp(-b't_{i})] (14a)$$

和

$$c_{i \text{ LOG}}$$

= $\ln \{ O_{s}(t_{i}) / [a' - O_{s}(t_{i})] \} - a' b' t_{i},$ (15a)

表 2. 以 4 組結球萵苣的生長曲線資料 (附錄 1) 分別套配線性 (LIN)、Gopertz (GOP) 和 Logistic (LOG) 模式 推估之參數 $a \, n \, b$,供決定相對生長率 (RGR) 和相對葉生長率 (RLR) 的時間函數 f(t)。

Table 2. Estimated values of parameters a and b by fitting linear (LIN), Gopertz (GOP) and Logistic (LOG) models with 4 datasets of iceberg lettuce's growth curves (Appendix 1), respectively, and determinations of relative growth rate (RGR) and relative leaf-growth rate (RLR) in functions of time f(t).

	RLR and RGR in functions of time f(t): model types and parameters								
_		LI	N ^z	GC	GOP ^y		LOG ^x		
Dataset and site	f(t)	а	b	а	b	а	b	$a \times b$	
M1_382	RLR	0.2029	0.0028	0.2203	0.0208	6693.500	$2.639\times 10^{\text{-5}}$	0.17664	
	RGR	0.1695	0.0016	0.1699	0.0113	49.579	$3.078\times10^{\text{-3}}$	0.15260	
M2_474	RLR	0.2119	0.0044	0.3624	0.0576	3000.000	$4.098\times10^{\text{-5}}$	0.12294	
	RGR	0.2087	0.0036	0.2792	0.0356	56.000	$1.702\times10^{\text{-3}}$	0.09531	
M3_427	RLR	0.2155	0.0039	0.2629	0.0390	2695.400	$3.869\times 10^{\text{-5}}$	0.10429	
	RGR	0.2068	0.0032	0.3246	0.0372	28.236	$4.676\times10^{\text{-3}}$	0.13203	
M4_550	RLR	0.1960	0.0032	0.2302	0.0317	8338.000	$9.049\times10^{\text{-6}}$	0.07545	
	RGR	0.2280	0.0034	0.3623	0.0368	46.314	$2.345\times10^{\text{-3}}$	0.10861	

^z $f(t)_{LIN} = a - bt$.

 $\int_{a}^{y} f(t)_{GOP} = a \exp(-bt).$ $\int_{LOG}^{x} f(t)_{LOG} = b[a - \exp(F)], \text{ where } F = \int f(t) dt.$

其中 $O_s(t_i) = \exp[L_s(t_i)]$, 而 c_i 表示生長曲線 各紀錄時間點植株生長表現的田區基線 (baseline),本研究以其累加平均計算出耦合參數 c',以代表該組試驗資料受田區內農地變異影 響的指標參數:

$$c' = (\Sigma c_i)/n , \qquad (16)$$

其中 n 為生長曲線的紀錄點數;將對應 3 種模 式的 c' 分別代入式 (13)、式 (14) 和式 (15) 的 右側參數 c 項,即可完成 3 種模式代表田區 S專一性的耦合模擬函數: $F_s(t|a', b', c')_{UN}$ 、 $F_s(t|a', b', c')_{GOP}$ $F_s(t|a', b', c')_{LOG}$

模式化與驗證流程

本研究提出以模式耦合溫度變化與農地變 異模擬結球萵苣生長之程序,步驟如圖2所 示, 並依據表1所列, 將6組結球萵苣生產試 驗資料分為模式化 (modeling) 和驗證 (validation) 兩部分,4組資料 (M1_382、M2_474、 M3 427 和 M4 550) 用於模式化步驟,2 組資 料 (V1 427 和 V2 382) 用於驗證步驟。步驟 1和2 (Steps 1 & 2): 以3種類型之時間函數 [式 (5)、式(6)和式(7)] 導入生長分析的核心指 標 RGR 與 RLR, 依定義分別推導出微分方程 式的解析解 [式 (8)、式 (9) 和式 (10)],即為 LIN、GOP和LOG等3種模式。步驟3和4 (Steps 3 & 4): 以 4 組模式化資料分別套配 3 種模式求出參數 a、b 和 c,參數 a 和 b 可供 生長分析說明 RGR 和 RLR 的動態變化。步驟 5 和 6 (Steps 5 & 6): 將 4 組模式化資料的參數 a和 b 對應 T-index (T) 的線性函數關係 a(T)和 b(T) [式 (11) 和式 (12)],以線性迴歸求出各 項係數,供耦合模擬不同溫度下 RGR 和 RLR 的動態變化。步驟 7 和 8 (Steps 7 & 8):將已 知試驗田區 S 的 T-index = Ts 代入式 (11) 和式 (12),估算出耦合參數 a' 和 b',併同對數化 試驗資料 $\ln[w_s(t_i)]$ 或 $\ln[A_s(t_i)]$ 導入耦合模擬 函數 [如式 (13a)、式 (14a) 和式 (15a)],再依式 (16) 計算出耦合參數 c'。

最後,為確認上述模式化步驟的可行性 及耦合模擬程序之有效性,本研究以田區 427 號和 382 號的 2 組不同來源資料 (V1 427 和 V2_382) 進行驗證,依上述步驟7和8,建構3 種模式類型的耦合生長模擬函數Fv1 427(t|a', b', c') 和 F_{v2 382}(t|a', b', c'), 並以平均絕對誤差 (mean absolute error; MAE) 和均方差 (mean squared

圖 2. 結球萵苣的生長分析與不同模式耦合溫度變化和田區變異之模式化及驗證程序。

Fig. 2. Procedures of modeling and validation for growth analysis of iceberg lettuce and use of different models coupling with temporal changes and farmland variation.

error; MSE),供比較不同模式的耦合模擬預測 準確度 (Walther & Moore 2005):

$$MAE = 1/n \cdot \Sigma |F_{s}(t_{i}|a', b', c') - L_{s}(t_{i})| \quad (17)$$

和

MSE
=
$$1/n \cdot \Sigma [F_{s}(t_{i}|a', b', c') - L_{s}(t_{i})]^{2}$$
, (18)

其中 t_i 是生長曲線的紀錄時間點, $F_s(t_i|a', b', c')$ 是模擬預測值, $L_s(t_i)$ 是生長紀錄的對數化觀 測值 ln[$w_s(t_i)$] 或 ln[$A_s(t_i)$];並以小樣本修正 的赤池資訊量準則 (Akaike information criterion; AIC_c) 為耦合模擬的適配性 (goodness-offit) 指標 (Hurvich and Tsai 1989; Rossi *et al.* 2020):

$$AIC_{c} = [n \cdot \ln(MSE) + 2k] + 2k \cdot (k+1)/(n-k-1),$$
(19)

其中依驗證資料 V1_427 和 V2_382 的生長紀 錄值個數設定 n = 5,且因各模式類型耦合皆 有 $a' \cdot b' 和 c' 等 3 個參數,設定 k = 3。$

結果與討論

生長曲線的模式套配

圖 3 為結球萵苣單株外葉面積對數化觀測 值與模式套配曲線,各組資料套配 LIN、GOP 和 LOG 模式的決定係數 $r^2 > 0.94$ 且顯著水準 P < 0.005,顯示 3 種模式的套配曲線皆可有 效評估試驗期間內 (DAT < 60) 結球萵苣外葉 面積的生長變異。然而,相較 LIN 和 GOP 模 式,亦可發現生長初期 (DAT < 30) LOG 模式 的套配曲線明顯偏離第 1 點觀測值,而且 3 種 模式外插至 DAT = 0 的截距差異明顯,尤其在 M2_474、M3_427 和 M4_550 等組資料的截距 差異性甚大。圖 4 為結球萵苣地上部乾重對數 化觀測值與模式套配曲線,各組資料套配 3 種 模式的 $r^2 > 0.91$ 且顯著水準 P < 0.005,顯示

圖 3. 各組試驗 (M1_382、M2_474、M3_427 及 M4_550) 之結球萵苣單株外葉面積 (cm² plt⁻¹) 的對數化資料 及 3 種模式的套配曲線:線性 (LIN)、Gopertz (GOP) 和 Logistic (LOG)。r² 表示決定係數,括弧內數值表示 顯著水準。

Fig. 3. Logarithmic values of iceberg lettuce's outer leaf area (cm² plt⁻¹) in the datasets (M1_382, M2_474, M3_427 and M4_550) and the fitting curves of 3 models: linear (LIN), Gopertz (GOP), and Logistic (LOG). r^2 denotes coefficient of determination and the significant level is denoted in parentheses.

各模式的套配曲線可有效描述試驗期間結球萵 苣地上部乾重的生長變異;由 r²的差異比較得 知,不同模式對各組資料的適配性差異明顯, 雖然3種模式對資料 M1_382 和 M3_427 的適 配性相近,且套配曲線與觀測值的吻合度極 高,但 LOG 模式對資料 M2_474 和 M4_550 的適配性卻明顯偏低,此結果與 LOG 模式套 配外葉面積生長資料的適配性較差趨勢一致 (圖 3)。

Tei et al. (1996) 在早期的研究已指出LIN、 GOP 和 LOG 等 3 種模式,皆可適用於描述田 間栽培萵苣的生長曲線,而且 GOP 模式的適 配性最佳,而且 LIN 模式更適合於模擬初期 生長快速的階段 (Scaife 1973)。Carini et al. (2019, 2020b) 指出 GOP 和 LOG 模式對溫室 水耕萵苣的生長曲線適配性良好,LOG 模式 對萵苣植株的生長變異有最佳描述,LOG 模 式也被優先推薦應用於土耕栽培萵苣的生長模 擬 (Carini et al. 2020a)。由圖 3 和圖 4 的結果 得知,以 3 種模式描述結球萵苣外葉面積和地 上部乾重的生長曲線皆具適用性,但各組資料 來源的產期氣候條件及所在田區之環境差異明 顯 (表 1、圖 1),亦可能影響 3 種模式的適配 性。依 S 形生長模式先慢後快再慢的形狀特徵 (Brisbin et al. 1987),各組資料紀錄的生育期 是結球萵苣營養生長期的前半階段,與 3 種模

圖 4. 各組試驗 (M1_382、M2_474、M3_427 及 M4_550) 之結球萵苣單株地上部乾重 (g plt⁻¹) 的對數化資料 及 3 種模式的套配曲線:線性 (LIN)、Gopertz (GOP) 和 Logistic (LOG)。r²表示決定係數,括弧內數值表示 顯著水準。

Fig. 4. Logarithmic values of iceberg lettuce's shoot dry weight (g plt⁻¹) in the datasets (M1_382, M2_474, M3_427 and M4_550) and the fitting curves of 3 models: linear (LIN), Gopertz (GOP), and Logistic (LOG). r^2 denotes coefficient of determination and the significant level is denoted in parentheses.

式前半段的形狀特徵相符,所以3種模式可普 遍適用於套配結球萵苣的生長曲線,然而先慢 後快的斜率遞增趨勢以GOP模式的遞增速率 最快,LIN模式其次,LOG模式的斜率遞增 較緩(Winsor 1932; Richards 1959; Cao *et al.* 2019),不同模式特徵差異與各組資料特性的 情境比對是影響模式適配性之關鍵。若由各組 資料來源的季節性溫度變化(圖1)和T-index (表1)發現,M1_382生育期溫度先低後高,可 預期生育前段(DAT < 30)生長速率遞增較慢, 較適合套配LOG模式,而M2_474和M4_550 生育期溫度先高後低,可預期生育前段(DAT < 30)生長速率遞增較快,較適合套配LIN和 GOP模式;因此生育期間不同階段紀錄資料的情境分析 (scenario analysis),也可提供選擇最佳模式類型的參考依據。

生長模式參數與 RGR 和 RLR 生長分析

表 2 為各組資料外葉面積和地上部乾重 套配 3 種模式估算的參數 a 和 b, LIN 模式 的參數 a 介於 0.1695-0.2280, 而參數 b 介於 0.0016-0.0044, M1_382、M2_474 和 M3_427 等組的外葉面積參數 a 和 b 皆分別大於地上部 乾重參數 a 和 b, 而 M4_550 的外葉面積參數 a 和 b 分別小於地上部乾重參數 a 和 b; GOP 模式的參數 a 介於 0.1699-0.3624, 參數 b 介

於 0.0113-0.0576, 組別 M1 382 和 M2 474 的 外葉面積參數a和b皆大於地上部乾重參數a和 b,但 M3 427 和 M4 550 的外葉面積參數 a 和 b 卻小於地上部乾重參數 a 和 b; LOG 模式 的參數乘積 (a × b) 介於 0.07545-0.17664, 也 可發現組別 M1 382 和 M2 474 的外葉面積參 數 $a \times b$ 皆大於地上部乾重參數 $a \times b$,但 M3 427 和 M4 550 的外葉面積參數 a × b 卻 小於地上部乾重參數 $a \times b$ 。以上不同組別資 料的3種模式參數 $a \cdot b$ 或 $a \times b$ 的差異,可能 與表1所示各組資料的生育期間平均溫度(T_) 和溫度指標(T-index)有關,其中組別 M1 382 與 M2 474 的 T_m和T-index 較高, M4 550 的 T-index 明顯偏低, 而 M3 427 的溫度及變化 居中,經比對可發現 T_m或 T-index 較高的組 別資料,呈現外葉面積參數 a 和 b 大於地上部 乾重參數 a 和 b 的傾向。

依據式 (5)、式 (6) 和式 (7),代入參數 a 和 b即可說明結球萵苣於生育期間 RGR 和 RLR 的變動趨勢,對於 LIN 和 GOP 模式,參數 a 代表定植日 (DAT = 0) 的起始 RGR 或 RLR, 而 LOG 模式的起始 RGR 或 RLR 則是參數 a × b, 而 3 種模式的參數 b 表示 RGR 或 RLR 隨植株生長的速率遞減指標 (Madariaga & Knott 1951; Chen et al. 2021)。若參數 a 和 b 受 溫度變化所影響,外葉面積參數 a 大於地上 部乾重參數a,植株生長前期的生理狀態趨 向 RLR 大於 RGR, 而且外葉面積參數 b 也大 於地上部乾重參數 b,則 RLR 的遞減速率大 於 RGR, 至生長後期可能 RGR 大於 RLR, 如此外葉面積比 (LAR) 傾向遞減而淨同化率 (NAR) 會遞增,將有利加速累積光合產物;例 如組別 M1_382 和 M2_474, 屬於 T_m和 T-index 較高者。相反,若外葉面積參數 a 小於地上 部乾重參數 a,植株生長前期趨向 RLR 小於 RGR,而且外葉面積參數 b 也小於地上部乾重 參數 b, RLR 的遞減速率小於 RGR, 將促使 LAR 號增而 NAR 可能會遞減,致使光合產物 的累積速率減緩;例如M4 550的T_m和T-index 皆較低者。為提升模式適配性及不同氣候特性 或栽培條件的廣泛適用性,已有許多研究提出 以生長積溫日數 (growth degree days; GDD) 取代定植後天數 (DAT),以套配 GDD 函數的 生長模式可更完整解釋萵苣的生長變化並精 準模擬生長過程 (Scaife *et al.* 1987; Tei *et al.* 1996; Carini *et al.* 2020a, 2020b)。

溫度變化的模式耦合

圖5所示為各組資料套配LIN和GOP模式 的參數 a 和 LOG 模式的參數 $a \times b$ (表 2) 對應 T-index (表 1) 之關係, LIN 模式的參數 a 對應 T-index 呈直線緩慢遞減 (圖 5A), GOP 模式 的參數 a 對應 T-index 呈通過高點的遞減曲線 (圖 5B), LOG 模式的參數 $a \times b$ 對應 T-index 呈直線遞增(圖5C)。圖6則是3種模式參數 b 對應 T-index 之關係,外葉面積與地上部乾 重資料套配同型模式的參數 b 對應 T-index 的 變動趨勢相近,皆呈現遞增再遞減的趨勢。換 言之,決定 RGR 和 RLR 之變動趨勢函數 f_w(t) 與 $f_{A}(t)$ 的參數a和b受溫度影響程度相似且 趨勢相近,顯示外葉面積和地上部乾重的生長 變異具高度關聯性,這結果也可佐證,本研究 假設結球萵苣植株外葉與內部葉球分別為主要 供源和積儲之合理性。

依本研究提出的模式耦合程序(圖2),其 中步驟 5 和 6 將式 (11) 和式 (12) 分別套入參 數 $a \, \pi \, b$ 對應 T-index 的關係圖形 (圖 5 和圖 6),所得之溫度耦合方程式 a(T) 和 b(T) 可用 於估算耦合參數 a' 和 b',由 a(T) 和 b(T)的決 定係數 (r^2) 得知 a' 和 b' 受溫度效應的影響程 度約40-80%,耦合溫度效應的程序仍可在有 限效度的標準下估算出參數 a' 和 b'; 但部分 r^2 的顯著水準未達 P < 0.1,以步驟 5 和 6 估 算耦合參數 a' 和 b' 的偏差與變異性,仍有待 後續的研究探討與改進。Wang (1960) 就指出 早在18世紀初科學家已發現生長過程的特定 階段與溫度直接相關,而且以日均溫度總和可 預測生長變化的過程;至今,基於溫度效應探 討植物生長及發育過程,並藉以預測生長速率 的研究概念,仍廣泛被應用於作物栽培技術和 生態資源保育的研究 (Grace 1988; Ritchie & NeSmith 1991; Hatfield & Prueger 2015) •

農地變異的模式耦合與驗證

本研究依模式耦合程序的步驟7和8(圖

圖 5. 各組試驗資料 (M1_382、M2_474、M3_427 及 M4_550) 的對數化結球萵苣外葉面積及地上部乾 重,分別被套配 (A) 線性 (LIN)、(B) Gopertz (GOP) 及 (C) Logistic (LOG) 等模式取得參數 *a* 和 *a* × *b* 以 對應各組溫度指標 (T-index) 之關係。*r*² 表示決定係 數,括弧內 *P* 值表示顯著水準。

Fig. 5. Modeled values of parameters *a* and $a \times b$ in (A) linear (LIN), (B) Gopertz (GOP) and (C) Logistic (LOG) models fitting to logarithmic values of iceberg lettuce's outer leaf area and shoot dry weight being in relation to the temperature indexes (T-index) for the datasets (M1_382, M2_474, M3_427 and M4_550). r^2 denotes coefficient of determination and the significant level is denoted as *P* value in parentheses.

圖 6. 各組試驗資料 (M1_382、M2_474、M3_427 及 M4_550) 的對數化結球萵苣外葉面積及地上部乾 重,分別被套配 (A) 線性 (LIN)、(B) Gopertz (GOP) 及 (C) Logistic (LOG) 等模式取得參數 b 以對應各組 溫度指標 (T-index) 之關係。r²表示決定係數,括弧 內 P 值表示顯著水準。

Fig. 6. Modeled values of parameter *b* in (A) linear (LIN), (B) Gopertz (GOP) and (C) Logistic (LOG) models fitting to logarithmic values of iceberg lettuce's outer leaf area and shoot dry weight being in relation to the temperature indexes (T-index) for the datasets (M1_382, M2_474, M3_427 and M4_550). r^2 denotes coefficient of determination and the significant level is denoted as *P* value in parentheses.

2),將表1中供模式化的各組資料(M1、M2、 M3 和 M4) 的 T-index 代入 3 種模式的耦合方 程式 a(T) 和 b(T) (圖 5 和圖 6),計算出耦合 參數 a' 和 b' (表 3), 再將 3 種模式的 a' 和 b' 分別代入式 (13a)、式 (14a) 和式 (15a), 推算出 對應的耦合參數 c' (表 3),可代表 M1、M2、 M3 和 M4 各組資料內農地變異影響植株生長 的反應基線。表3所示之耦合參數a'和b'是 由4組模式化資料共同建構的溫度變化函數 式(11)和式(12)計算求出,其表示植株生長 受溫度變化影響的代表參數,可供計算植株受 溫度變化影響的生長量 [式 (13)、式 (14) 和式 (15)];而耦合參數 c' 是各組生長曲線資料的 5 個觀測值,扣除受溫度變化影響的生長量之殘 差平均,也就各組資料所在田區農地變異影響 生長的平均基準,耦合參數 c'可能因田區位 置不同或栽培管理方式改變而有顯著差異, 依據式 (8)、式 (9) 和式 (10) 的 LIN、GOP 和 LOG 模式定義,將耦合參數 $a' \cdot b'$ 和 c' 代入, 即可得出涵蓋耦合溫度變化及農地變異之生長 模擬函數 $F_s(t|a', b', c')$, 並可解釋各組資料的 田區專一性 (site-specific)。圖 7A 和圖 7B 分 別為外葉面積和地上部乾重的對數化耦合模擬 估計值對應觀測值之散布圖,整體趨勢呈現 估計值對應觀測值多集中分布於1:1對角線 上,表示以 F_s(t|a', b', c') 估算外葉面積和地上 部乾重的準確度高, 月3種模式的耦合模擬皆 具適用性。然而,以LIN和 GOP 模式進行耦 合模擬之外葉面積估計值,於植株生長前期明 顯低估,但後期高估,而 LOG 模式的推估偏 差則較小且無特定趨勢(圖8A);3種模式對 地上部乾重的耦合模擬預測在初始生長皆明顯 低估,但 LIN 和 GOP 模式於前期逐漸轉為高 估,後期雖些微低估但偏差較小,LOG 模式 於生長後期的部分推估值明顯偏低,皆為組別 M4 550 的資料,但其他組資料的推估值與觀 測值吻合度極高 (圖 8B)。相較 LIN 和 GOP 模 式,以LOG 模式耦合模擬外葉面積和地上部乾 重在生長後期的預測準確度較高,如此較有利 於正確推算最適採收期與最終收穫產量,若以

表 3. 以 4 組結球萵苣的外葉面積 (A) 和地上部乾重 (w) 生長曲線資料 (附錄 1) 分別估算線性 (LIN)、 Gopertz (GOP) 和 Logistic (LOG) 模式的耦合參數 a'、b'和 c'。

Table 3. Parameters a', b', and c' estimated by coupling procedures for linear (LIN), Gopertz (GOP) and Logistic (LOG) models, respectively, with 4 datasets of iceberg lettuce's growth curves (Appendix 1) for outer leaf area (A) and shoot dry weight (w).

	Parameter	Leaf area (A) ln(A) = $F_s(t a', b', c')$			Dry weight (w) $\ln(w) = F_{s}(t a', b', c')$			
Dataset and site	coupling	LIN ^z	GOP ^y	LOG ^x	LIN	GOP	LOG	
M1_382	<i>a'</i>	0.1890	0.1883	5665.4000	0.1890	0.1883	56.6540	
	b'	$1.804\times10^{\text{-3}}$	0.0138	$2.89\times 10^{\text{-5}}$	$1.804\times10^{\text{-3}}$	0.0138	$2.89\times 10^{\text{-3}}$	
	с′	1.8541	15.7280	-6.3596	-3.3092	10.5650	-7.2896	
M2_474	a'	0.2086	0.3059	3252.0000	0.2086	0.3059	32.5200	
	b'	$3.598\times 10^{\text{-3}}$	0.0411	3.42×10^{-5}	$3.598\times 10^{\text{-3}}$	0.0411	3.42×10^{3}	
	с′	2.4327	9.2623	-4.0217	-2.8000	4.0296	-6.3423	
M3_427	a'	0.2055	0.3005	3120.8000	0.2055	0.3005	31.2080	
	b'	$3.568\times 10^{\text{-3}}$	0.0409	$3.83\times10^{\text{-5}}$	$3.568\times 10^{\text{-3}}$	0.0409	$3.83\times 10^{\text{-}3}$	
	с′	1.8834	8.5832	-5.2353	-3.0205	3.6793	-5.5799	
M4_550	a'	0.2166	0.2966	5909.1000	0.2166	0.2966	59.0910	
	b'	$3.568\times 10^{\text{-3}}$	0.0346	$1.52\times 10^{\text{-5}}$	$3.568\times 10^{\text{-3}}$	0.0346	$1.52\times 10^{\text{-}3}$	
	с'	1.4071	9.5815	-4.6552	-3.6996	4.4748	-5.3071	

^z $F_{\rm S}(t|a', b', c')_{\rm LIN} = (-b'/2)t^2 + a't + c'.$

 $^{y} F_{s}(t|a', b', c')_{GOP} = (-a'/b') \exp(-b't) + c'.$

^x F_s(t|a', b', c')_{LOG} = ln {a'/[1 + exp(-c') · exp(-b' t)]}.

圖 7. 分別以線性 (LIN)、Gopertz (GOP) 及 Logistic (LOG) 模式的耦合模擬程序預測各組試驗資料 (M1_382、M2_474、M3_427 及 M4_550) 的對數化 (A) 結球萵苣外葉面積及 (B) 地上部乾重對應其觀測值之散布圖。 Fig. 7. Scatter plots of the predicted vs. observed values for (A) logarithmic outer leaf area, ln(A) and (B) shoot dry weight, ln(w), with the datasets (M1_382, M2_474, M3_427 and M4_550) by using the coupled modeling procedures of linear (LIN), Gopertz (GOP) and Logistic (LOG) models, respectively.

圖 8. 以試驗資料 (A) V1_427 和 (B) V2_382 驗證 3 種模式:線性 (LIN)、Gopertz (GOP) 及 Logistic (LOG) 對 結球萵苣外葉面積和地上部乾重的模式耦合曲線。AICc 表示赤池資訊量準則 (Akaike information criterion), 供評估模式耦合曲線的適配性。

Fig. 8. Use of both datasets (A) V1_427 and (B) V2_382 for validation of models coupling curves in logarithmic values of iceberg lettuce's outer leaf area and shoot dry weight with the 3 models: linear (LIN), Gopertz (GOP) and Logistic (LOG). AIC_c is Akaike information criterion for assessing the good-of-fit of models coupling curves.

耦合程序的操作及應用便利性的整體考量,具 普遍適用性的 LIN 和 GOP 模式可被優先選擇。

本研究為能直接驗證 3 種模式的耦合模擬 函數 $F_s(t|a', b', c')$,推估結球萵苣外葉面積和 地上部乾重生長的預測準確度,故以兩組驗證 資料 $V1_427$ 和 $V2_382$ 進行模擬推估的驗證, 表 4 為驗證組別資料 $V1_427$ 和 $V2_382$ 的耦 合參數 a'、b' 和 c',其中 a' 和 b' 以 $V1_427$ 和 $V2_382$ 兩組驗證資料於表 1 中的溫度指標 19.8 和 21.0 代入式 (11) 和式 (12) 求出,因為 式 (11) 和式 (12) 的溫度指標函數關係是由附 錄 1 的 4 組模式化資料所產生,估算 $V1_427$ 和 $V2_382$ 的 a' 和 b'僅需植株生育期間之溫 度記錄,換算溫度指標即可;再以算出的耦合 參數 a' 和 b'分別替代式 (8)、式 (9) 和式 (10) 中的參數 $a \ \pi b$, 如式 (13)、式 (14) 和式 (15) 中所述之關係,可分別供 3 種模式計算植株受 溫度變化影響的生長量: $(-b'/2)t^2 + a't$ 、 $(-a'/b') \cdot \exp(-b't) \pi a'b't$ 。再依式 (13a)、式 (14a) 和式 (15a) 所示之關係,將求出的耦合參數 a'和b'以及附錄 2 外葉面積和地上部乾重的 5 個生長紀錄觀測值分別代入,由式 (16) 計算 出c',即可個別完成兩組驗證資料的生長模擬 函數: $F_{VI_427}(t|a', b', c')$ 和 $F_{V2_382}(t|a', b', c')$; 由於c'的估算過程需要所在田區植株生長紀 錄的實測資料,可優先引用相同田區和相近栽 培管理程序之歷史資料,亦可引用當期作植株 生長初期的紀錄資料估算c',以對後續生長表 現、採收時間與收穫產量進行預測評估。本研 究以式 (17) 和式 (18) 分別計算出 3 種模式耦 合函數模擬推估值的 MAE 和 MSE (如表 4), 對外葉面積的推估驗證,3 種模式的 MAE 皆 小於 0.4,而 MSE 皆小於 0.2;對於地上部乾 重的推估驗證,3 種模式的 MAE 多小於 0.2, 而 MSE 多小於 0.04,僅 LIN 模式套用組別 V1_427 有偏高趨勢,顯示本研究提出耦合季 節性溫度差異和農地變異的程序建構結球萵苣 生長模擬函數,其運算操作的可行性與推估外 葉面積和地上部乾重生長的準確度,皆可獲得 初步確認。

針對組別資料 V1_427 的驗證結果,無論 是外葉面積和地上部乾重,LOG 模式的 MAE 和 MSE 都明顯低於 LIN 和 GOP 模式,而 GOP 模式又低於 LIN 模式,顯示 LOG 模式的耦合 模擬預測準確度最高,而 GOP 次之;然而對 於 V1_382 的驗證結果,以 GOP 模式模擬預測 外葉面積的 MAE 和 MSE 明顯低於以 LIN 和 LOG 模式的模擬預測,但對於地上部乾重的模 擬預測,則 3 種模式的準確度並無明顯差異和 特定趨勢。圖 7 是將 3 種模式建構的耦合模擬 函數曲線套疊於觀測資料,LOG 模式的耦合 模擬曲線在生長初期明顯偏離觀測值,但後期 與觀測值的吻合度明顯較高,而 LIN 和 GOP 模式的耦合模擬曲線相近,卻於生長後期明 顯高估偏離觀測值。再進一步以適配性指標 AIC。比較模式偶合模擬曲線套疊的吻合度, 可發現相較 LIN 和 LOG 模式,GOP 模式的耦 合模擬曲線 AIC。皆較低,然而 LOG 模式僅 對 V1_427 地上部乾重的模擬預測 AIC。較低 (圖 7A 之下圖),其它則偏高;因此 GOP 模式 的耦合模擬曲線套疊完整生育期間之觀測值, 吻合度最高。

結論

本研究以結球萵苣的相對葉生長率 (RLR) 和相對生長速率 (RGR) 做為建構生長模式的 論述基礎,比較線性 (LIN)、Gopertz (GOP) 和 Logistic (LOG) 模式套配外葉面積和地上 部乾重生長資料的適配性,結果顯示3種模式 描述外葉面積和地上部乾重的生長曲線皆具適 用性,但3種模式的適配性可能因氣候條件及 環境差異的影響有明顯差異。再者,套配3種 模式估算的參數 *a* 和 *b* 不僅可供說明生育期間 RGR 和 RLR 的變動趨勢,而且依據參數 *a* 和 *b* 對應溫度指標 (T-index) 的關係,以溫度耦

表 4. 以 2 組結球萵苣的外葉面積和地上部乾重的生長曲線資料 (附錄 2) 估算線性 (LIN)、Gopertz (GOP) 和 Logistic (LOG) 模式的耦合參數 a'、b'和 c',並分別以平均絕對誤差 (MAE) 和均方差 (MSE) 驗證之。

Table 4	1. Pa	rameters a', b	', and c	c' obtained	t by coupl	ing procedure	s for linear	r (LIN),	Gopertz	(GOP) a	and I	Logistic
(LIN) r	nodels	s, respectively,	, with 2	2 datasets	of iceberg	lettuce's grov	wth curves	(Append	dix 2) for	outer 1	eaf a	rea (A)
and sho	oot dry	weight (w) an	nd valid	ation by u	sing mean	absolute error	r (MAE) an	d mean s	squared e	rror (M	SE).	

	Parameter	ln(A	Leaf area (A) A) = $F_s(t a', b',$. c')	Dry weight (w) $\ln(w) = F_{s}(t a', b', c')$			
Dataset and site	coupling	LIN ^z	GOP ^y	LOG ^x	LIN	GOP	LOG	
V1_427	<i>a'</i>	0.1954	0.2406	4057.3000	0.1954	0.2406	40.5730	
	b'	$2.678\times 10^{\text{-3}}$	0.0275	$3.67\times 10^{\text{-5}}$	2.678×10^{-3}	0.0275	$3.67\times 10^{\text{-3}}$	
	c'	2.3452	10.8680	-5.5528	-2.6093	5.9800	-5.7921	
	MAE	0.3954	0.3189	0.1641	0.2485	0.1695	0.0882	
	MSE	0.1788	0.1185	0.0491	0.0698	0.0343	0.0144	
V2_382	<i>a'</i>	0.1920	0.2093	5073.7000	0.1920	0.2093	50.7370	
	b'	$2.160\times10^{\text{-3}}$	0.0194	$3.12\times10^{\text{-5}}$	2.160×10^{-3}	0.0194	$3.12\times 10^{\text{-3}}$	
	c'	1.4416	12.2960	-7.0275	-3.3993	7.4551	-7.2749	
	MAE	0.3541	0.2542	0.3421	0.1356	0.1652	0.1784	
	MSE	0.1731	0.0928	0.1933	0.0387	0.0327	0.0376	

^z $F_{s}(t|a', b', c')_{LIN} = (-b'/2)t^{2} + a't + c'.$

 ${}^{y}F_{s}(t|a', b', c')_{GOP} = (-a'/b') \exp(-b't) + c'.$

^x F_s(t|a', b', c')_{LOG} = ln {a'/[1 + exp(-c') · exp(-b't)]}.

合方程式 a(T) 和 b(T) 可預估季節性氣候溫度 **改變對植株生長速率影響,並估算出耦合參數** a'和 b';結合特定田區 (S)的植株生長資料, 可再推算出代表農地變異影響植株生長的耦合 參數 c', 依據 LIN、GOP 和 LOG 模式定義, 將耦合參數 a'、b' 和 c' 代入, 即可得出耦合 溫度變化及農地變異之生長模擬函數 F_s(t|a', b', c');由耦合模擬的結果顯示,相較 LIN 和 GOP 模式,以 LOG 模式耦合模擬外葉面積和 地上部乾重在生育期後段的預測準確度高,較 有利準確推估最適採收期與最終收穫產量,若 以耦合程序的操作及應用性考量,以普遍適用 的 LIN 和 GOP 模式可被優先選擇。綜觀本研 究結果,以耦合模擬程序(圖2),推演出結球 萵苣的生長模擬函數 F_s(t|a', b', c'),可將產區 現地 (in situ) 影響植株生長的氣候條件和農地 變異導入生長模式,因此各田區的生長模擬函 數具專一性,可更準確預測外葉面積生長與生 物量累積之過程;而且 LIN 和 GOP 模式較適 合應用於完整生育期的栽培模擬及研擬生產規 劃,LOG 模式較適合應用於栽培期間的生長 監控與最終產量評估。

引用文獻

- Amer, F. A. and W. T. Williams. 1957. Leaf-area growth in Pelargonium zonale. Ann. Bot. 21:339–340. doi:10.1093/oxfordjournals.aob.a083568
- Asseng, S., B. T. Kassie, M. H. Labra, C. Amador, and D. F. Calderini. 2017. Simulating the impact of sourcesink manipulations in wheat. Field Crops Res. 202:47–56. doi:10.1016/j.fcr.2016.04.031
- Babcock, C., A. O. Finley, B. D. Cook, A. Weiskittel, and C. W. Woodall. 2016. Modeling forest biomass and growth: Coupling long-term inventory and LiDAR data. Remote Sens. Environ. 182:1–12. doi:10.1016/ j.rse.2016.04.014
- Beyene, A. N., H. Zeng, B. Wu, L. Zhu, T. G. Gebremicael, M. Zhang, and T. Bezabh. 2021. Coupling remote sensing and crop growth model to estimate national wheat yield in Ethiopia. Big Earth Data (ahead of print). doi:10.1080/20964471.2020.18375 29
- Bhatt, G. M. 1976. Variation of harvest index in several wheat crosses. Euphytica 25:41–50.
- Bindraban, P. S. 1999. Impact of canopy nitrogen profile in wheat on growth. Field Crops Res. 63:63–77. doi:10.1016/S0378-4290(99)00030-1

- Boote, K. J., M. J. Kropff, and P. S. Bindraban. 2001. Physiology and modelling of traits in crop plants: Implications for genetic improvement. Agric. Syst. 70:395–420. doi:10.1016/S0308-521X(01)00053-1
- Boote, K. J., J. W. Jones, J. W. White, S. Asseng, and J. I. Lizaso. 2013. Putting mechanisms into crop production models. Plant Cell Environ. 36:1658–1672. doi:10.1111/pce.12119
- Breure, T. S., A. E. Milne, R. Webster, S. M. Haefele, J. A. Hannam, S. Moreno-Rojas, and R. Corstanje. 2021. Predicting the growth of lettuce from soil infrared reflectance spectra: The potential for crop management. Precis. Agric. 22:226–248. doi:10.1007/ s11119-020-09739-x
- Briggs, G. F., F. Kidd, and C. West. 1920a. A quantitative analysis of plant growth. Part I. Ann. Appl. Biol. 1:103–123. doi:10.1111/j.1744-7348.1920.tb05107.x
- Briggs, G. F., F. Kidd, and C. West. 1920b. A quantitative analysis of plant growth. Part II. Ann. Appl. Biol. 1:202–223. doi:10.1111/j.1744-7348.1920.tb05308.x
- Brisbin, I. L., Jr., C. T. Collins, G. C. White, and D. A. McCallum. 1987. A new paradigm for the analysis and interpretation of growth data: The shape of things to come. The Auk 104:552–554. doi:10.2307/4087567
- Buck-Sorlin, G. 2013. Process-based model. p.1755. *in*: Encyclopedia of Systems Biology. (Dubitzky, W., O. Wolkenhauer, K. H. Cho, and H. Yokota, eds.) Springer. New York, NY. 2367 pp. doi:10.1007/978-1-4419-9863-7_1545
- Cao, L., P. J. Shi, L. Li, and G. Chen. 2019. A new flexible sigmoidal growth model. Symmetry 11:204. doi:10.3390/sym11020204
- Carini, F., A. C. Filho, C. T. Bandeira, I. M. M. Neu, R. V. Pezzini, M. Pacheco, and R. M. Thomasi. 2019. Growth models for lettuce cultivars growing in spring. J. Agric. Sci. 11:147–159. doi:10.5539/JAS. V11N6P147
- Carini, F., A. C. Filho, J. M. de Souza, R. V. Pezzini, C. Ubessi, and M. A. Kreutz. 2020a. Fitting a logistic growth model to yield traits in lettuce cultivars growing in summer. Rev. Colomb. Cienc. Hortic. 14:104–114. doi:10.17584/rcch.2020v14i1.8955
- Carini, F., A. C. Filho, R. V. Pezzini, J. M. de Souza, G. G. Chaves, and A. Procedi. 2020b. Nonlinear models for describing lettuce growth in autumn-winter. Ciênc. Rural 50:e20190534. doi:10.1590/0103-8478cr20190534
- Chen, C. C., D. Y. Lee, and K. W. Juang. 2021. Evaluation of the relationship between growth variations of crisphead lettuce and climate conditions through growth analysis and modeling. J. Taiwan Agric. Res. 70:253–269. doi:10.6156/JTAR.202112_70(4).0003

(in Chinese with English abstract)

- Chen, H., M. H. Hsieh, and L. Y. D. Liu. 2019. Incorporation of solar radiation and temperature to estimate production of field growing iceberg lettuce. Crop Environ. Bioinform. 16:98–108. doi:10.30061/ CEB.201906_16(2).0004 (in Chinese with English abstract)
- Chen, J. J. and C. K. Yang. 2017. To promote smart agriculture- Turn around agriculture in Taiwan. Pub. Gov. Qtly. 5(4):104–111. (in Chinese)
- Chen, Y. A. and Y. J. Wang. 2021. The goals of agricultural production in 2021. Agric. Pol. Rev. 346:67–75. (in Chinese)
- de Bem, C. M., A. C. Filho, G. G. Chaves, J. A. Kleinpaul, R. V. Pezzini, and A. Lavezo. 2018. Gompertz and logistic models to the productive traits of sunn hemp. J. Agric. Sci. 10:225–238. doi:10.5539/jas. v10n1p225
- Fakorede, M. A. B. and J. J. Mock. 1980. Growth analysis of maize variety hybrids obtained from two recurrent selection programmes for grain yield. New Phytol. 85:393–408. doi:10.1111/J.1469-8137.1980. TB03178.X
- Fernandes, T. J., A. A. Pereira, and J. A. Muniz. 2017. Double sigmoidal models describing the growth of coffee berries. Ciênc. Rural 47:e20160646. doi:10.1590/0103-8478cr20160646
- Fraile-Robayo, R. D., J. G. Álvarez-Herrera, A. J. Reyes M., O. F. Álvarez-Herrera, and A. L. Fraile-Robayo. 2017. Evaluation of the growth and quality of lettuce (*Lactuca sativa* L.) in a closed recirculating hydroponic system. Agron. Colomb. 35:216–222. doi:10.15446/AGRON.COLOMB.V35N2.63439
- Gent, M. P. N. 2017. Factors affecting relative growth rate of lettuce and spinach in hydroponics in a greenhouse. HortScience 52:1742–1747. doi:10.21273/ HORTSCI12477-17
- Gibert, A., E. F. Gray, M. Westoby, I. J. Wright, and D. S. Falster. 2016. On the link between functional traits and growth rate: Meta-analysis shows effects change with plant size, as predicted. J. Ecol. 104:1488–1503. doi:10.1111/1365-2745.12594
- Goudriaan, J. and H. H. van Laar. 1994. Modeling Potential Crop Growth Processes. Springer. Dordrecht, The Netherlands. 239 pp.
- Grace, J. 1988. Temperature as a determinant of plant productivity. Symp. Soc. Exp. Biol. 42:91–107.
- Hatfield, J. L. and J. H. Prueger. 2015. Temperature extremes: Effect on plant growth and development. Weather Clim. Extrem. 10:4–10. doi:10.1016/ j.wace.2015.08.001
- Hoffmann, W. A. and H. Poorter. 2002. Avoiding bias

in calculations of relative growth rate. Ann. Bot. 90:37–42. doi:10.1093/aob/mcf140

- Hoogenboom, G., C. H. Porter, V. Shelia, K. J. Boote, U. Singh, J. W. White, L. A. Hunt, R. Ogoshi, J. I. Lizaso, J. Koo, S. Asseng, A. Singels, L. P. Moreno, and J. W. Jones. 2019. Decision support system for agrotechnology transfer (DSSAT), version 4.7.5. DSSAT Foundation, Gainesville, FL, USA.
- Hurvich, C. M. and C. L. Tsai. 1989. Regression and time series model selection in small samples. Biometrika 76:297–307. doi:10.1093/BIOMET/76.2.297
- Jenni, S. and W. Yan. 2009. Genotype by environment interactions of heat stress disorder resistance in crisphead lettuce. Plant Breed. 128:374–380. doi:10.1111/J.1439-0523.2009.01657.X
- Jones, J. W., B. A. Keating, and C. H. Porter. 2001. Approaches to modular model development. Agric. Syst. 70:421-443. doi:10.1016/S0308-521X(01)00054-3
- Jones, J. W., G. Hoogenboom, C. H. Porter, K. J. Boote, W. D. Batchelor, L. A. Hunt, P. W. Wilkens, U. Singh, A. J. Gijsman, and J. T. Ritchie. 2003. DS-SAT cropping system model. Europ. J. Agronomy 18:235–265. doi:10.1016/S1161-0301(02)00107-7
- Jones, J. W., J. M. Antle, B. Basso, K. J. Boote, R. T. Conant, I. Foster, H. C. J. Godfray, M. Herrero, R. E. Howitt, S. Janssen, B. A. Keating, R. Munoz-Carpena, C. H. Porter, C. Rosenzweig, and T. R. Wheeler. 2017. Brief history of agricultural systems modeling. Agric. Syst. 155:240–254. doi:10.1016/ j.agsy.2016.05.014
- Koester, R. P., J. A. Skoneczka, T. R. Cary, B. W. Diers, and E. A. Ainsworth. 2014. Historical gains in soybean (*Glycine max* Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies. J. Exp. Bot. 65:3311–3321. doi:10.1093/jxb/eru187
- Liao, F. H., H. Huang, and L. Hung. 1993. Physiology of head formation in cabbage and Chinese cabbage. p.181–192. *in*: Proceedings of a Symposium on Vegetable Production and Development. April 11– 12, 1991. Taichung, Taiwan. TARI Spec. Publ. No. 41. Taiwan Agric. Res. Inst., Taichung. (in Chinese with English abstract)
- López-Cruz, I. L., A. Ramírez-Arias, and A. Rojano-Aguilar. 2004. Sensitivity analysis of a dynamic growth model for greenhouse grown lettuce (*Lactuca sativa* L.). Agrociencia 38:613–624.
- Madariaga, F. J. and J. E. Knott. 1951. Lettuce growth rates: Investigations find heat unit accumulations not a reliable means of predicting harvest time. Calif. Agric. 5:4. doi:10.3733/ca.v005n10p4

- McCown, R. L., G. L. Hammer, J. H. G. Hargreaves, D. P. Holzworth, and D. M. Freebairn. 1996. APSIM: A novel software system for model development, model testing and simulation in agricultural systems research. Agric. Syst. 50:255–271. doi:10.1016/0308-521X(94)00055-V
- Mischan, M. M., J. R. de Souza Passos, S. Z. de Pinho, and L. R. de Carvalho. 2015. Inflection and stability points of diphasic logistic analysis of growth. Sci. Agric. 72:215–220. doi:10.1590/0103-9016-2014-0212
- Moriyuki, S., H. Kaneda, Y. Miyagi, N. Sugimura, and H. Fukuda. 2018. Profit models based on the growth dynamics of lettuce populations in a plant factory. Environ. Control Biol. 56:143–148. doi:10.2525/ ecb.56.143
- Morrison, R. E. and A. Cunha. 2020. Embedded model discrepancy: A case study of Zika modeling. Chaos 30:051103. doi:10.1063/5.0005204
- Muller, B. and P. Martre. 2019. Plant and crop simulation models: Powerful tools to link physiology, genetics, and phenomics. J. Exp. Bot. 70:2339–2344. doi:10.1093/jxb/erz175
- Paine, C. E. T., T. R. Marthews, D. R. Vogt, D. Purves, M. Rees, A. Hector, and L. A. Turnbull. 2012. How to fit nonlinear plant growth models and calculate growth rates: An update for ecologists. Methods Ecol. Evol. 3:245–256. doi:10.1111/j.2041-210X.2011.00155.x
- Parenti, A., G. Cappelli, W. Zegada-Lizarazu, C. M. Sastre, M. Christou, A. Monti, and F. Ginaldi. 2021. SunnGro: A new crop model for the simulation of sunn hemp (*Crotalaria juncea* L.) grown under alternative management practices. Biomass Bioenerg. 146:105975. doi:10.1016/j.biombioe.2021.105975
- Phillips, G. and P. Taylor. 1996. Theory and Application of Numerical Analysis. 2nd ed. Academic Press. San Diego, CA. 447 pp.
- Pommerening, A. and A. Muszta. 2015. Methods of modelling relative growth rate. For. Ecosyst. 2:5. doi:10.1186/s40663-015-0029-4
- Potter, J. R. and J. W. Jones. 1977. Leaf area partitioning as an important factor in growth. Plant Physiol. 59:10–14. doi:10.1104/pp.59.1.10
- Radford, P. J. 1967. Growth analysis formulae- Their use and abuse. Crop Sci. 7:171–175. doi:10.2135/cropsci1967.0011183X000700030001x
- Rees, M., C. P. Osborne, F. I. Woodward, S. P. Hulme, L. A. Turnbull, and S. H. Taylor. 2010. Partitioning the components of relative growth rate: How important is plant size variation? Am. Nat. 176:E152–E161. doi:10.1086/657037

- Richards, F. J. 1959. A flexible growth function for empirical use. J. Exp. Bot. 10:290–300. doi:10.1093/ jxb/10.2.290
- Ritchie, J. T. and D. S. NeSmith. 1991. Temperature and crop development. p.5–29. *in*: Modeling Plant and Soil Systems. (Hanks, R. J. and J. T. Ritchie, eds.) American Society of Agronomy. Madison, WI. 545 pp.
- Rossi, R., A. Murari, P. Gaudio, and M. Gelfusa. 2020. Upgrading model selection criteria with goodness of fit tests for practical applications. Entropy 22:447. doi:10.3390/e22040447
- Roux, S., F. Brun, and D. Wallach. 2014. Combining input uncertainty and residual error in crop model predictions: A case study on vineyards. Eur. J. Agron. 52:191–197. doi:10.1016/J.EJA.2013.09.008
- Saiz-Rubio, V. and F. Rovira-Más. 2020. From smart farming towards Agriculture 5.0: A review on crop data management. Agronomy 10:207. doi:10.3390/ agronomy10020207
- Scaife, A., E. F. Cox, and G. E. L. Morris. 1987. The relationship between shoot weight, plant density and time during the propagation of four vegetable species. Ann. Bot. 59:325–334. doi:10.1093/oxfordjournals.aob.a087321
- Scaife, M. A. 1973. The early relative growth rates of six lettuce cultivars as affected by temperature. Ann. Appl. Biol. 74:119–128. doi:10.1111/j.1744-7348.1973.tb07730.x
- Shahhosseini, M., G. Hu, I. Huber, and S. V. Archontoulis. 2021. Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt. Sci. Rep. 11:1606. doi:10.1038/s41598-020-80820-1
- Shimizu, H., M. Kushida, and W. Fujinuma. 2008. A growth model for leaf lettuce under greenhouse environments. Environ. Control Biol. 46:211–219. doi:10.2525/ecb.46.211
- Siad, S. M., V. Iacobellis, P. Zdruli, A. Gioia, I. Stavi, and G. Hoogenboom. 2019. A review of coupled hydrologic and crop growth models. Agric. Water Manag. 224:105746. doi:10.1016/j.agwat.2019.105746
- Tei, F., D. P. Aikman, and A. Scaife. 1996. Growth of lettuce, onion and red beet. 2. Growth modelling. Ann. Bot. 78:645–652. doi:10.1006/anbo.1996.0172
- Tsakmakis, I., N. Kokkos, V. Pisinaras, V. Papaevangelou, E. Hatzigiannakis, G. Arampatzis, G. D. Gikas, R. Linker, S. Zoras, V. Evagelopoulos, V. A. Tsihrintzis, A. Battilani, and G. Sylaios. 2017. Operational precise irrigation for cotton cultivation through the coupling of meteorological and crop growth models. Water Resour. Manage. 31:563– 580. doi:10.1007/s11269-016-1548-7

- Walther, B. A. and J. L. Moore. 2005. The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28:815–829. doi:10.1111/j.2005.0906-7590.04112.x
- Wang, J. Y. 1960. A critique of the heat unit approach to plant response studies. Ecology 41:785–790. doi:10.2307/1931815
- Watson, D. 1958. The dependence of net assimilation rate on leaf-area index. Ann. Bot. 22:37-54. doi:10.1093/oxfordjournals.aob.a083596
- Weraduwage, S. M., J. Chen, F. C. Anozie, A. Morales, S. E. Weise, and T. D. Sharkey. 2015. The relationship between leaf area growth and biomass accumulation in *Arabidopsis thaliana*. Front. Plant Sci. 6:167. doi:10.3389/fpls.2015.00167
- West, C., G. E. Briggs, and F. Kidd. 1920. Methods and significant relations in the quantitative analysis of

plant growth. New Phytol. 19:200–207. doi:10.1111/j.1469-8137.1920.tb07327.x

- Williams, R. F. 1946. The physiology of plant growth with special reference to the concept of net assimilation rate. Ann. Bot. 10:41–72. doi:10.1093/oxfordjournals.aob.a083119
- Winsor, C. P. 1932. The Gompertz curve as a growth curve. Proc. Natl. Acad. Sci. U.S.A. 18:1–8. doi:10.1073/pnas.18.1.1
- Yang, C. K., Y. Y. Shih, and S. H. Yang. 2016. Approaching to Taiwan agriculture 4.0 by smart technology. Agric. Pol. Rev. 289:6–11. (in Chinese)
- Yin, X., E. A. Lantinga, Ad H. C. M. Schapendonk, and X. Zhong. 2003. Some quantitative relationships between leaf area index and canopy nitrogen content and distribution. Ann. Bot. 91:893–903. doi:10.1093/aob/mcg096
- Zeide, B. 1993. Analysis of growth equations. Forest Sci. 39:594–616. doi:10.1093/forestscience/39.3.594

附錄1. 供模式化步驟的4組結球萵苣生長曲線資料:移植日數(DAT)、植株外葉面積(A)和地上部乾重(w), 以及對數化面積和乾重 ln(A)和 ln(w)。

Appendix 1. Four datasets of iceberg lettuce's growth curves used in the modeling procedures: days after transplanting (DAT), outer leaf area (A) and shoot dry weight (w) of lettuce plant, and logarithmic values of A and w, ln(A) and ln(w).

			Shoot dry weight		
Datasets and sites	DAT	Outer leaf area (A)	(w)	ln(A)	ln(w)
	d	cm ² plt ⁻¹	g plt ⁻¹		
M1_382	10	52.86 (1.61) ^z	0.3419 (0.0141)	3.9676	-1.0731
	23	294.80 (20.60)	1.3177 (0.1223)	5.6864	0.2759
	35	1,891.90 (107.10)	11.0140 (0.4446)	7.7284	2.3992
	43	4,134.50 (226.60)	23.3670 (0.8235)	8.3271	3.1513
	51	5,817.90 (102.80)	37.5340 (1.7114)	8.6687	3.6252
M2_474	10	117.70 (4.83)	0.3902 (0.0170)	4.7684	-0.9410
	21	492.20 (15.50)	1.9262 (0.0552)	6.1988	0.6555
	31	1,637.30 (65.70)	8.6766 (0.2647)	7.4008	2.1606
	42	2,321.30 (65.30)	13.4220 (0.3251)	7.7499	2.5969
	52	2,566.40 (97.00)	28.0160 (0.8584)	7.8503	3.2328
M3_427	19	164.30 (9.69)	0.9874 (0.0579)	5.1015	-0.0127
	29	747.90 (18.00)	3.3430 (0.1014)	6.6173	1.2069
	41	1,365.20 (29.40)	11.3100 (0.3032)	7.2191	2.4257
	50	1,991.70 (26.20)	19.3030 (0.5543)	7.5967	2.9602
	58	2,340.50 (61.20)	24.3660 (0.7335)	7.7581	3.1932
M4_550	19	222.00 (10.90)	0.7864 (0.0422)	5.4024	-0.2402
	31	782.70 (17.30)	4.0271 (0.1997)	6.6627	1.3930
	40	1,877.20 (44.70)	11.9220 (0.3116)	7.5375	2.4784
	51	2,517.30 (105.00)	22.4700 (0.7285)	7.8309	3.1120
	59	4,168.90 (285.70)	32.8700 (0.7354)	8.3354	3.4925

^z Values in parentheses are standard errors (n = 6).

附錄 2.	供驗證的2	組結球萵苣生長曲線資料	:移植日數	(DAT)	·植株外葉面積	(A) 和地	上部乾重	(w) ,	以
及對數化	面積和乾重	In(A)和In(w)。							

Datasets and sites	DAT	Outer leaf area (A)	Shoot dry weight (w)	ln(A)	ln(w)
	d	cm ² plt ⁻¹	g plt ⁻¹		
V1_427	12	144.80 (11.80) ^z	0.7400 (0.0626)	4.9754	-0.3065
	20	506.10 (22.20)	2.8762 (0.1221)	6.2268	1.0565
	33	1,207.10 (28.60)	12.8740 (0.4547)	7.0960	2.5552
	45	3,758.60 (293.50)	25.7460 (0.9909)	8.2318	3.2483
	53	4,361.50 (222.80)	36.0260 (0.9326)	8.3806	3.5842
V2_382	14	90.96 (6.11)	0.4086 (0.0223)	4.5104	-0.9851
	25	350.50 (8.58)	2.0134 (0.0720)	5.8594	0.6998
	34	786.60 (24.50)	8.9092 (0.3304)	6.6677	2.1871
	45	2,162.00 (127.60)	21.2800 (0.9490)	7.6788	3.0578
	55	3,356.60 (111.40)	35.8950 (1.4955)	8.1187	3.5806

Appendix 2. Two datasets of iceberg lettuce's growth curves used in the validation: days after transplanting (DAT), outer leaf area (A) and shoot dry weight (w) of lettuce plant, and logarithmic values of A and w, ln(A) and ln(w).

^z Values in parentheses are standard errors (n = 6).

附錄 3. 相對生長率 (RGR) 和相對葉生長率 (RLR) 的動態趨勢以泰勒級數展開表示為時間的線性函數 f(t)。 Appendix 3. Expression of relative growth rate (RGR) and relative leaf-growth rate (RLR) in linear functions of time f(t) with the Taylor-series expansion.

假設 RLR 和 RGR 的變動趨勢為時間函數 f(t),在接近 t = 0 附近以泰勒級數展開 (Taylor-series expansion) 表示如下 (Phillips & Taylor 1996):

$$f(t) = f(0) + t \cdot f'(0) + t^2/2! \cdot f''(0) + t^3/3! \cdot f^{(3)}(0) + \dots + t^m/m! \cdot f^{(m)}(0) + \dots ,$$
(A1)

其中 $f^{(m)}(0)$ 表示在 t = 0 附近的 m 次微分值,可依試驗資料的生長曲線特徵和不同時間觀測點數 決定簡化級數項次:

$$\mathbf{f}(\mathbf{t}) = \mathbf{f}(\mathbf{0}) \quad \mathbf{\cdot} \tag{A2a}$$

$$f(t) = f(0) + f'(0) \cdot t$$
 (A2b)

$$f(t) = f(0) + f'(0) \cdot t + f''(0) \cdot t^2/2!$$
 (A2c)

因此,當 RLR 或 RGR 的變動趨勢缺乏相關理論假設或專家經驗推薦時,可考慮優先以時間的級 數線性函數表示,雖可擴增級數線性函數的項次以提升配適性,但擴增項次即增加未知係數的估 算,亦不利既有資料觀測點數 (n = 5)的適配性評估。而當生長曲線特徵近似 S 型曲線時,建議 可優先選擇僅需兩項係數的非線性函數式 (6) 和式 (7)。

Comparison of Different Models Coupled with Temperature Changes and Farmland Variation for Modeling Growth of Iceberg Lettuce

Chu-Chung Chen^{1,2}, Dar-Yuan Lee³, and Kai-Wei Juang^{4,*}

Abstract

Chen, C. C., D. Y. Lee, and K. W. Juang. 2022. Comparison of different models coupled with temperature changes and farmland variation for modeling growth of iceberg lettuce. J. Taiwan Agric. Res. 71(1):49–72.

Iceberg lettuce (Lactuca sativa L.) grown during the cool seasons in Taiwan is the flagship vegetable to export,. High temperatures in summer will retard or violate the heading physiology of iceberg lettuce, so Taiwan's iceberg lettuce is routinely grown from early autumn to the late spring of next year. In the growth of iceberg lettuce, the outer leaves expending would be a major source of photosynthates; the leafy head which accumulates abundant photosynthates would be a sink. The growth of outer leaves will govern the yield of the leafy head. In smart agriculture, it is essential to optimize the growth model to increase the benefits of cropping management in smart agriculture, while coping with the growth variation in different crops. Linear (LIN), Gopertz (GOP), and Logistic (LOG) models are frequently used for modeling crop growth. In the present study, relative leafgrowth rate (RLR) and relative growth rate (RGR) are fundamental to developing the growth model of iceberg lettuce. The growth curves for shoot dry weight and outer leaf area were fitted to LIN, GOP, and LOG models. And model coupling procedures with the seasonal temperature changes and farmland variation were proposed to improve the prediction of the growth modeling. Two experimental sites, No. 427 and 382, are located at Erlun Township, Yunlin County and the other two sites, No. 474 and 550, are located at Mailio Township, Yunlin County. The growth survey of lettuce plants at sites No. 427 and 382 was carried out in the Winter 2017 and Spring 2018 cropping seasons, respectively. At sites No. 474 and 550, the growth survey of lettuce plants was only conducted in the cropping season Winter 2017. A total of six datasets were used in the study for model fitting assessment and validation. The results showed that LIN, GOP, and LOG models were well fitted to the growth curves of the outer leaf area and shoot dry weight. The goodness-of-fit for the models would be varied by the climate of growing seasons and environmental variation of sites. Parameters a and b obtained from the models fitting could be used to describe the dynamics of RGR and RLR in growth periods; also, the values of a and b were imported by the coupling expressions, a(T) and b(T), with temperature (T) to evaluate the influences of seasonal temperature changes on the growth rates. In addition, a(T) and b(T) were combined with data of plant growth recordings on the site (S) to obtain coupling parameters a', b', and c'. Then, the growth modeling functions, $F_{s}(t|a', b', c')_{LIN}$, $F_{s}(t|a', b', c')_{GOP}$ and F_s(t|a', b', c')_{LOG}, corresponding to LIN, GOP, and LOG models were developed, respectively. Compared with $F_{S}(t|a', b', c')_{LIN}$ and $F_{S}(t|a', b', c')_{GOP}$, $F_{S}(t|a', b', c')_{LOG}$ was more accurate in the predictions of outer leaf area and shoot dry weight at the later growth periods; thus, LOG model used in the coupled modeling procedure would be more suitable for prediction of the time to harvest and the yield of leafy heads. If the range of application and convenience of use are the priorities for modeling the growth of iceberg lettuce, LIN, and GOP models will be the superior options in models coupling.

Key words: Growth analysis, Models coupling, Linear model, Gopertz model, Logistic model.

Received: August 31, 2021; Accepted: Novmber 15, 2021.

^{*} Corresponding author, e-mail: kwjuang@mail.ncyu.edu.tw

¹ Doctoral Student, Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan, ROC.

² Associate Research Fellow, Agricultural Chemistry Division, Taiwan Agricultural Research Institute, Taichung City, Taiwan, ROC.

³ Professor, Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan, ROC.

⁴ Professor, Department of Agronomy, National Chiayi University, Chiayi, Taiwan, ROC.