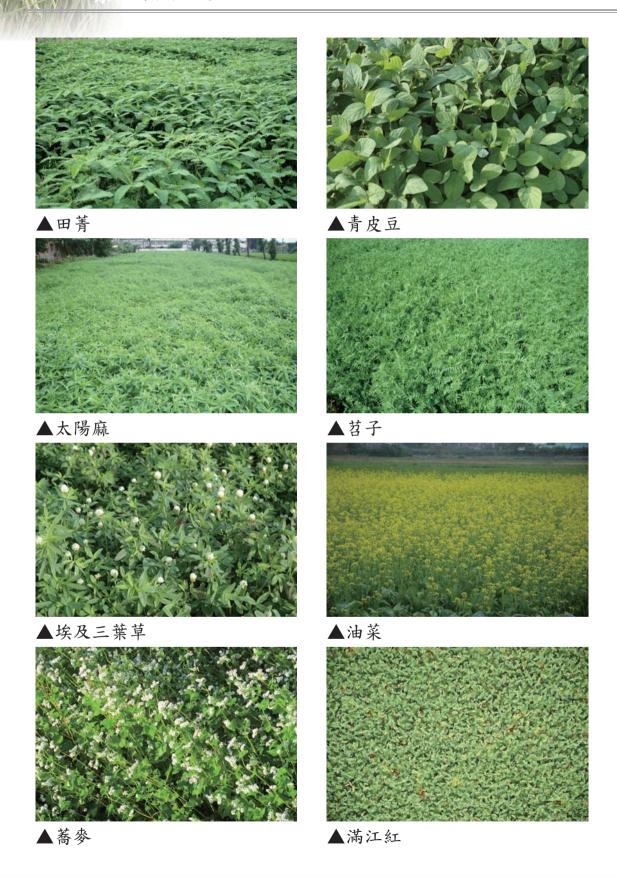


綠肥作物栽培與利用


賴文龍、曾宥綋

綠肥作物係指可直接或間接作為肥料或改善土壤環境者,其具增 加土壤養分、有機質、改良土壤理化性及減少土壤沖蝕之功能。臺灣 地區目前栽培綠肥作物有本地及國外引進之品種,綠肥種類繁多,包 括豆科、禾本科、十字花科、馬齒莧科、蓼科、胡麻科、菊科等,其 中以豆科綠肥的栽培居多。

綠肥的種類

臺灣綠肥栽培以栽培季節或期作區分為夏季、冬季綠肥及多年生 綠肥。夏季綠肥如田菁、太陽麻、青皮豆、豇豆、落花生、小油菊、 向日葵、富貴豆(虎爪豆)、芝麻及青刈玉米等作物。冬季綠肥如苕 子、埃及三葉草、紫雲英、豌豆、香豆子(香苜蓿)、油菜、白菜、大 菜、蕎麥、羽扇豆(魯冰)、蠶豆及青刈燕麥等作物。多年生綠肥如紫 花苜蓿、多年生花生、黑麥草、葛藤、山毛豆、三葉草、爬地藍、蝴 蝶豆、營多藤及銀合歡等作物。水生綠肥如滿江紅、水草、水浮蓮、 水花生等作物。

豆科綠肥如青皮豆、田菁、太陽麻、落花生、紫雲英、苕子、埃及 三葉草、虎爪豆、蠶豆、苜蓿、豇豆、豌豆、香豆子、葛藤、營多藤、 波斯三葉草、羽扇豆、綠豆、烏豆及米豆等作物;十字花科綠肥如油 菜、白菜及大菜等作物;禾本科如玉米、高粱、小麥、薏苡、燕麥及黑 麥草等作物;馬齒莧科綠肥如豬母乳;蓼科綠肥如蕎麥;胡麻科綠肥如 胡麻; 菊花科綠肥如向日葵、小油菊、昭和草(飛機草)及紅花等作物。

水稻栽培管理技術手册

▲小油菊

▲向日葵

▲大菜

▲白菜

▲豌豆

▲羽扇豆

▲豬母乳

▲落花生

▲多年生花生

▲玉米

▲高粱

▲薏苡

▲小麥

▲黑麥草

綠肥栽培的重要性

農作物栽培於土壤中,經由土壤供應生育所需之養分,作物收成 後需補充土壤肥分,以維持下一期作之產量及品質。因此,農業生產 必須使用化學肥料、有機質肥料、生物肥料及栽培綠肥作物等以供應 作物養分。其中綠肥作物因具有改善土壤理化性質之功用,於農業生 產至為重要,其功效如下:

提供作物生長所需之營養

豆科綠肥作物的根部有根瘤菌與豆根共生行固氮作用,再供應給 豆科作物利用,豆科綠肥經根瘤固氮作用,轉換大氣氮為有機態氮, 使綠肥作物掩施後經微生物分解而緩慢釋放氮肥,提供後作作物營養 肥分,同時綠肥掩施之殘體,在分解過程中,會產生有機酸、碳酸及 鉗合物,可溶解土壤中難溶解之養分(如磷、鉀等礦物養分),增加土 壤中植物養分有效性。

綠肥可改善土壤理化性質

綠肥作物生長至開花盛期或結莢飽滿期耕犁掩埋,因綠肥殘體中 含有纖維素、木質素等不易分解物質,可經腐植化作用逐步增加土壤 腐植質,其可與土壤粘粒接合成土壤膠體複合物,具促進土壤團粒構 造,改善土壤孔隙度、通氣性、透水性,增加土壤陽離子交換能力, 提高地溫,及土壤緩衝能力。深根性豆科綠肥作物,主根可伸入深層 土層中,使深層土壤緊密結構變為疏鬆,改善土壤結構,且可把深層 養分集存到表層土壤中,增加作物養分吸收利用。

綠肥栽培可提高土壤之微生物活性

掩施後之綠肥殘體(有機物質)是土壤微生物分解之養料,提供微 生物的營養及能量,促進有益微生物之繁殖及活動,以平衡土壤微生

物族群,降低與避免病原菌繁殖,增加作物抗病性。

覆蓋土壤地被,防止土壤沖蝕及抑制雜草滋生

綠肥作物具有濃密的莖葉,覆蓋土壤表面,防止雜草滋生及阻礙 雨水直接強擊土壤,造成土壤沖蝕流失。一般豆科綠肥作物主根部深 入土層深處,其根系與植株殘體之有機質具有膠結土壤之功能,可固 結土壤,有效減少土壤沖蝕,並可蓄積土壤中水分及養分。

減少病蟲害發生

農田輪作系統中加入綠肥作物栽培,增加生物多樣性,改變根圈 土壤中有機質之組成,提高根圈土壤生物多樣性,維持穩定生態系並 提高土壤微生物活性,使土壤中病原菌或害蟲的族群減少,降低病蟲 害發生。同時打破連作障害,促進毒害物質的分解,減輕土壤中毒害 物質的累積。

綠美化田園景觀

綠肥作物具有花朵多、花期長及花色鮮豔,綠化美化農村環境田 園景觀,增加農村休閒去處。

兼具其他功用

有些綠肥作物的莖葉富含礦物質、蛋白質、脂肪、醣類及其他養分,可做禽畜飼料、蔬菜用,如油菜之嫩莖葉提供人類食用,開花期可提供蜜蜂採蜜的來源,為良好的蜜源作物。

水稻栽培管理技術手册

▲羽扇豆開花蜜蜂傳播花粉採蜜

▲油菜花為最佳蜜源作物

▲向日葵可提供蜜源之綠肥作物

▲苕子開花時亦可做為蜜源

▲油菜

▲苕子

▲收穫機收割牧草及殘體

▲埃及三葉草青草飼料飼養乳牛

夏季綠肥作物栽培利用

田菁

田菁(Sesbania cannabina Pers.)又名山菁,為豆科田菁屬植物,於1920年代(日據時代)引進臺灣栽培,屬一年生或多年生小灌木狀草本植物,主莖高約1~2公尺。莖基部之根系會著生圓球狀根瘤,其固氮能力強。田菁春播發芽後20~30天或夏播發芽後15~20天,根系形成根瘤開始固氮,田菁根瘤多,固氮能力強,根系發達,植株生長旺盛。

田菁在臺灣栽培歷史悠久,為水田、旱田夏季綠肥作物之一, 主要栽培以中、南部地區種植面積較廣。氣候以春夏作溫度高,雨量 充沛,極適田菁生長,一般土壤均可栽培,以中、南及東部之農田更 適合栽培。溫度對田菁種子發芽和生長有密切關係,最適宜發芽溫度 為20~30℃,一般播種後3~5天即可發芽,田菁最適生長溫度25~ 30℃,其生長最旺盛。田菁較不耐寒,春作溫度太低時播種,有礙幼 苗生長,秋季太遲播種,溫度低於20℃以下,田菁生長緩慢,株高 50~60公分,進入始花期,影響生草量。

田菁性喜潮濕,土壤過於乾旱時應灌溉,因田菁抗旱能力較差, 尤其幼苗期,生長緩慢,久旱不雨對生長十分不利,必須行灌溉以濕 潤土壤,促進生長;七、八月間雨量充沛,應注意排水;生長後期, 較耐水,以田間保持濕潤即可。

田菁的適應性很強,對土壤要求不嚴格,其適宜生長的土壤pH值在5.8~7.5。田菁幼苗期需消耗土壤中部分養分,在生長40天後,開始大量固氮,對氮素的要求較少,但對磷養分需求較多,施磷肥可加速田菁生長,增加鮮草產量,促進根瘤固氮效能,從而提高其植體內的氮磷含量。

田菁一般於3~7月間播種,休耕稻田田菁的播種量每公頃20~

30公斤。不整地播種方式在第一期水稻收穫前3~5天,將田菁種子均 与撒播稻田中,水稻收刈時稻草(稈)切細撒佈並覆蓋稻田,維持土壤 濕潤,提高田菁種子吸濕利於發芽。整地播種方式於水稻收穫後,粗 整地碎土,均匀將種子撒播,再細整地(淺耕)栽培。由於播種時期不 同,田菁營養生長期進入生殖生長期的時間(日數)亦不相同,春播田 菁一般需要80~90天左右,夏播田菁約需50~60天左右進入生殖生 長。田菁幼苗初期,生長緩慢,抑制雜草能力較弱,須行中耕除草, 田菁生育旺盛期間,植株遮蔽度大,根系發達,有效抑制雜草生長。

田菁栽培期間的病蟲害有蚜蟲、切根蟲、夜盜蟲、金龜子及豆莢 螟(捲葉蟲)等害蟲危害,請參考植物保護手冊推薦藥劑防治,以防止 害蟲大量繁殖而族群增加,危害鄰近農作物。

田菁幼苗期植株幼嫩,含水量較高,生長緩慢,生草量低;開 花期田菁則生長迅速,乾物質迅速累積,生草量高,養分總含量增 加。田菁結莢初期植株養分含量低於幼苗期、開花期,但生草量達到 高峰,相對氦含量最高。成熟期植株含水量較低,因木質化後鮮重降 低,氦含量最低,建議田菁掩施以開花期至結莢初期養分最高時翻耕 掩施。此時期碳氮比值較低,養分易礦化,釋出養分提供後作物吸收 利用。掩施田菁不僅提供後作充足營養,且提高土壤肥力。

田菁耕犁掩施時期以生草量達到最高,莖葉柔嫩多汁,尚未木質 化,植株生長至1.2公尺以上時為最佳掩施時期,過早或過遲均不宜。 耕犁翻土深度在15~20公分左右,翻犁時不宜先行切碎或刈倒,要使 田菁植體和土壤充分緊密結合,土壤保持適當水分,加速綠肥植體腐 熟分解,增加土壤有機質含量,改善土壤理化性質。

田菁播種後60~80天,植株高約1公尺以上,每公頃生草量 25,000~35,000公斤,植物體鮮草養分氮素含量0.38~0.47%,磷酐 0.07~0.12%,氧化鉀0.42~0.47%。掩施田菁綠肥每公頃30,000公斤 生草量,氮礦化率80%估算,提供氮素91~112公斤/公頃(約施用硫酸 銨433~533公斤/公頃或尿素197~243公斤/公頃),磷酐16~28公斤/公 頃(約施用過磷酸鈣88~155公斤/公頃),氧化鉀100~112公斤/公頃(約 施用氯化鉀166~186公斤/公頃)用量。掩施田菁綠肥作物後,後作氮 肥施肥管理,應較未掩施綠肥之土壤減少1/3~1/2肥料用量,且依後 作作物生育反應狀況,靈活調節氮肥用量,以避免肥分過量造成倒伏 而減產。

▲整地播種田菁萌芽生長

▲田菁生長情形

▲田菁受蟲害情形

▲田菁初期生長情形

田菁遭受蟲害為害

▲田菁害蟲防治

青皮豆

大豆(Glycinemax L.)為豆科,蝶形亞科,大豆屬為一年生草本植 物,大豆綠肥品種以直立型,莖葉生長茂盛且植株生草量多為佳。目 前臺灣地區栽培綠肥用大豆主要為直立型大豆類(青皮豆)之臺南4號、 虎尾青皮豆及匍匐型之綠肥大豆臺南7號。青皮豆為直立型植株其株 高約60~110公分左右,生育期約100~160天;匍匐型之主莖長可達 約300~500公分,生育期長達180~220天。葉卵圓形、花紫色、豆莢 黃褐色,種皮黃綠色。根系發達,主根深入耕作土層中約50~80公 分,對土壤理化性及生物性改良有顯著效果。

青皮豆能於短時間內植株莖葉生長旺盛,此特性極符合綠肥栽 培利用之目的,此外,其對環境選擇不嚴,喜肥耐貧,排水良好,土 壤pH 6.8~7.5之各種土壤皆可種植,為適應性極廣之綠肥作物。春作 於2~3月,夏作於7~8月播種,青皮豆撒播時每公頃播種量25~30公 斤,種子發芽率若低於80%時應酌量增加種子用量。

水稻田採整地撒播或不整地撒播,不整地於水稻收穫前1日土壤 含水量約20~30%時播種,收刈時將稻稈切割撒舖田區覆蓋,隨即灌 溉排水(不可浸水);另整地撒播則在田區土壤濕潤行耕犁整地,整地 後將種子均勻撒播,種子分散均勻,隨著淺耕並覆土2~5公分,覆土 不宜太深,以免豆粒發芽幼胚莖及子葉出土受阻而影響發芽,田間土 壤應保持濕潤,以提高種子發芽率。栽培期間注意田間排水,以利綠 肥作物生長,避免田間因下雨積(浸)水而枯死。

青皮豆播種萌芽前後土壤不宜過濕,以免種子腐爛,生育期間 視稻田土壤乾旱狀況,酌加灌溉2~3次,俾利青皮豆生長,增加生草 量,如逢大雨積水時應注意排水,避免積水根部窒息而影響根部發育 及降低固氮能力。

青皮豆作物其根部主根及側根與根瘤菌共生著生根瘤粒具有固氮 作用,因此,青皮豆栽培可在生育不佳時酌施氮肥促進生長,一般栽 培可不施氮肥。在貧瘠土壤施磷肥可促進生育,增加植體鮮草產量。

青皮豆栽培期間若有病蟲如斜紋夜盜蟲、擬尺蠖、椿象、莖潛蠅、露菌病及銹病等危害,請依植物保護手冊之藥劑防治,以防止大量繁殖而危害鄰近農田作物。

青皮豆掩施時期,視青皮豆綠肥作物植株生長情形,一般於播種後80~150天,以青皮豆生育期間結莢飽滿青熟期肥分最高,即青皮豆開花後40~50天植株結莢達飽滿青熟期間翻犁掩埋。農田土壤適量灌水,將青皮豆植株翻耕掩埋入土壤中深度達10公分以上,掩施後保持湛水狀態可加速促進綠肥腐熟分解,增加肥效。

青皮豆播種後80~100天,生草量約25,000~35,000公斤/公頃,植物體鮮草養分含量,氮素0.63~0.72%,磷酐0.09~0.10%,氧化鉀0.32~0.52%,以每公頃掩施30,000公斤生草量,氮礦化率80%估算,提供氮素152~172公斤(約施用硫酸銨723~819公斤/公頃或尿素330~373公斤/公頃),磷酐21~24公斤/公頃(約施用過磷酸鈣116~133公斤/公頃),氧化鉀76~124公斤/公頃(約施用氯化鉀126~206公斤/公頃)用量。掩施後由於青皮豆綠肥作物肥分相當高,後作作物氮肥肥培管理需減施1/2~2/3氮肥用量,且依後作作物生育中、後期狀況靈活調節氮肥施用量。

水稻栽培管理技術手册

▲整地播種青皮豆萌芽出土之小苗

▲整地栽培田間積水造成青皮豆缺株

▲青皮豆生長情形

▲青皮豆開紫色花朶

▲青皮豆根系著生根瘤粒

▲青皮豆結莢情形

▲青皮豆結莢飽滿期間翻犁掩施

▲青皮豆植株乾後呈黄褐色豆莢

富貴豆(虎爪豆)

富貴豆(Saizolobium hassioo Piper)又名虎爪豆、黎豆為豆科植 物,原產於熱帶及亞熱帶地區。1910年代引進臺灣,於中、南及東 部地區栽培,目前,以東部地區種植較多,常於農田旱地甘蔗園種 植,並與甘蔗輪作。富貴豆為多年生蔓藤草本植物,主莖蔓光滑,長 達8公尺以上。葉為羽狀三出複葉,小葉長卵形葉頂端圓形而尖,葉 面光滑而背面有茸毛,葉柄基部有小托葉,花呈白色至深紫色,花萼 鐘形。果莢長約10公分,稍帶彎曲形狀如彎刀狀下垂而生,豆莢密生 茸毛,成熟期呈深褐棕色或黑褐色,果莢內有3~8粒種子,種籽呈長 橢圓形或腎形,種皮呈灰白、斑紋或黑等顏色,種臍有白色隆起之種 阜。根系發達,近表土面形成大量根瘤粒著生,固氮能力強,植株生 長旺盛。

富貴豆性喜高溫 $(20\sim30$ ℃)且日照充足之氣候,於排水狀況良好 之土壤皆可栽種,一期作(2~6月)及二期作(7~10月)間之休耕田均可 播種栽培,每公頃播種量20~40公斤,一般採用點播方式播種,每一 植穴播種1~2粒並覆土,播種後2~3個月翻耕掩埋,若延遲至4個月 以上則因老化之莖蔓纏繞於機械耕犁刀架上,造成翻耕掩埋不易且徒 增人工割除纏繞莖蔓之勞力支出。

富貴豆為豆科植物其根群與固氮菌共生,根系著生根瘤較多,行 固氮作用,可提供植株本身之氮肥。在臺灣為夏季休耕田綠肥栽培作 物之一,目前於休耕田可作主作物栽培,生長期不受季節限制,於莖 葉濃綠且植株生長旺盛披覆地被,播種後約2個月後即可翻犁掩埋入 土層中,以促進分解,增進地力及改善土壤理化性質。

富貴豆生長勢較強,因此於播種後60~70天左右,莖蔓長達4~ 5公尺以上,莖葉柔軟多汁尚未木質化即可翻耕掩埋,其生草量約 20,000~30,000公斤/公頃,植物體鮮草養分含量氮素0.13~0.18%, 磷酐 $0.10\sim0.12\%$,氧化鉀 $0.35\sim0.42\%$ 。掩施富貴豆綠肥每公頃以

25,000公斤/生草量計算,氮礦化率80%估算,提供氮素26~36公斤 /公頃(約施用硫酸銨123~171公斤/公頃或尿素56~78公斤/公頃), 磷酐20~24公斤/公頃(約施用過磷酸鈣111~133公斤/公頃),氧化鉀 70~84公斤/公頃(約施用氯化鉀116~140公斤)用量。掩施富貴豆綠 肥作物後種植後作物之氮肥肥培管理,應較未掩施綠肥之農田減少 1/4~1/3肥料用量,且依後作種植作物品種、種類之生育反應營養狀 況,靈活調節氮肥用量,以避免過量施用氮肥造成作物倒伏或病蟲害 而影響減產。

▲富貴豆幼株萌芽生長

▲富貴豆植株蔓莖生長情形

▲富貴豆覆蓋情形(張繼中提供) ▲富貴豆豆莢及種籽

太陽麻

太陽麻 (Crotalaria juncea L.) 又稱桱麻、菽麻、印度麻等。豆科 蝶形花亞科豬屎豆屬植物,為一年生草本植物,原產印度,臺灣於 1928年引進種於臺灣糖業公司自營農場甘蔗田。太陽麻發芽後6~7天 幼根開始形成根瘤著生,生長約25天後其固氮能力較強。

太陽麻性喜高溫濕潤土壤,對土壤的選擇不嚴,以排水良好壤土 最適宜,土壤pH值4.5~8.0範圍內均可種植,土壤氮素含量過多時會 抑制太陽麻根部形成根瘤,降低固氮作用。臺灣地區在中、南及東部 均適合太陽麻種植,目前為休耕地種植主要綠肥之一。太陽麻在3月 以後至8月下旬均可播種,休耕之水稻田於第一期作收穫前播種。每 公頃種子播種量25~30公斤,播種後約3~5天發芽,幼苗生育期應注 意保持田間土壤濕潤狀態,俾利生長,生育期間忌浸水應注意田間排 水。

太陽麻發芽後約40~50天後開始開花,生育中後期植株高度達1 公尺以上,莖葉生長茂盛,其鮮草養分含量最高,太陽麻於播種後約 3個月(為盛花期、幼莢形成期間)為最適掩埋時期,可利用曳引機或 耕耘機耕犁將植株殘體埋入10~20公分土壤中,田間灌水以湛水狀 熊下促使太陽麻殘體加速充分腐熟作用,分解釋放養分提供後作之肥 效。

太陽麻播種後20~90天,植株生草量每公頃約20,000~30,000公 斤,植物體鮮草養分氮素0.37%、磷酐0.08%、氧化鉀0.14%。以掩施 太陽麻綠肥植體每公頃25,000公斤生草量,氮礦化率80%估算,可提 供氮素(N) 74公斤/公頃(約施用硫酸銨352公斤/公頃或尿素160公斤/公 頃),磷酐(P_2O_5) 16公斤/公頃(約施用過磷酸鈣88公斤/公頃),氧化鉀 $(K_{\circ}O)$ 28公斤/公頃(約施用氯化鉀46公斤/公頃)用量。除可提供上述肥 分供給後作作物所需的養分,其分解之殘留纖維素、木質素等物質可增 加土壤有機質,以改善土壤理化性質,增進農田地力。

水稻栽培管理技術手册

▲整地後之太陽麻生長

▲太陽麻開蝶形金黃色花朶

▲利用曳引機耕犁掩埋太陽麻

▲果莢成熟乾後裂開露出腎臟形種子

太陽麻抽花苔

太陽麻為農村增添金黃色花海美景

▲太陽麻之橢圓形果莢

▲太陽麻種籽

冬(裡作)季綠肥作物栽培利用

苕子

苕子(Vicia dasycarpa. L)是巢菜屬(野豌豆屬)植物,又名野豌豆、 箭筈豌豆、草藤等,為一年生或多年生草本植物,栽培品種多屬於一 年生或越年生匍匐蔓性之豆科植物。苕子原產於歐洲及亞洲西部,野 豌豆則於歐洲分布最多,其中以地中海沿岸和中東地區各國為最主要 栽培地區。臺灣地區以北部、中部及嘉南地區皆有栽培,主要品種為 毛葉苕子(Vicia villosa Roth.),亦有毛葉紫花苕子、茸毛苕子、假扁豆 等名。

苕子對土壤的選擇不嚴格,任何肥沃土壤均可種植,土壤酸鹼度 (pH)於4.5~9.0範圍內均可,最適宜之土壤pH值在5.0~8.5。苕子耐酸 性強,耐旱但不耐濕,生長期間土壤適宜含水量為15~25%,若根系 浸水則苕子生長受制,使地上部由淺綠色而轉變為紫色,因此,播種 苕子之田區須做好排水溝以防苕子浸水。

水稻田區以撒播苕子每公頃播種量15~20公斤,於第二期水稻收 穫後栽培,因於水稻收穫前3~5天撒播於稻株行間,隨即灌溉田區, 俟田面濕潤後排水,水稻收穫時將切割的稻稈覆蓋田區;或於水稻收 穫後3~5天,待稻桿乾枯後,將苕子種子均勻撒播,並引水灌滿整個 田區。尚未種植之田區,可取曾種過苕子之田區土壤混合種子,並撒 播、接種根瘤菌,促進鬚根生長及根瘤形成著生。酸性土壤播種前亦 可施用石灰每公頃500公斤,耕犁整地混入土壤中改良土壤酸鹼度。 苕子對磷肥反應特別敏感,因此,苕子於任何土壤播種,如施用磷肥 可促進植株生長而增加生草量。苕子較不耐濕,浸水後植株呈紫紅色 為生長不良癥狀,低窪地區宜多加注意排水,生育初期田土應保時濕 潤以促進生長。

苕子經適宜的栽培管理,於開花盛期時其生草產量每公頃可達 30,000~50,000公斤,此時植株營養養分含量較高,莖蔓柔軟多汁為 最適宜掩埋入土之時,掩埋後最易腐熟分解。一般應於後作作物種植 前15天翻犁掩埋土中,即植後翌年之2~3月即可翻犁,翻犁後淺水灌 溉以加速植株殘體發酵分解,並釋出礦物養分,增加土壤肥力及提供 後作作物生長期間之養分。苕子植體有效肥分鮮草含氮素0.56%、磷 酐0.13%、氧化鉀0.43%。每公頃生草量以40,000公斤,氮礦化率80% 估算,可供後作作物每公頃約179公斤氮素(約施尿素389公斤或硫酸 銨852公斤),磷酐41.6公斤/公頃(約施過磷酸鈣231公斤/公頃),氧化 鉀137.6公斤/公頃(約施氯化鉀229公斤/公頃)用量。掩施苕子綠肥作 物後,對後作作物之氣肥施用,應較未種植綠肥之肥培管理,減少 2/3~3/4氮肥肥料用量,且依後作作物生長反應狀況,靈活調整氮肥 用量,以避免因施過量氮肥造成作物生育過於旺盛,倒伏而影響產量 與品質。

▲苕子初期生長情形

▲苕子生長情形

▲苕子植株分枝呈放射狀生長

▲苕子開花生長情形

苕子授粉結果萊

▲苕子植株花梗著生長果莢

▲苕子根部著生大型扇狀根瘤粒

▲苕子深褐色種皮之種子

埃及三葉草

埃及三葉草(Trifolium alexandrium L.)又名亞歷山大三葉草,三葉 草屬豆科,溫帶一年生或越年生植物,埃及三葉草區分為多刈型(卡美 種, Carmel)與單刈型(大埔種, Tabor),原產於中亞細亞,經敘利亞及巴 基斯坦而傳入埃及,在埃及多栽種於尼羅河流域。臺灣於1976年由以 色列引進單刈型埃及三葉草栽培。

埃及三葉草為一年生豆科草本植物,性喜冷涼氣候,較不耐高 溫、不耐霜凍與不耐濕,耐鹽性高(含鹽分達0.6%的土壤,仍可生 長),濱海地區亦可栽培生長,適宜土壤以粘重土壤至砂壤土均可種 植,土壤濕潤狀態,排水狀況佳為宜。稻田每公頃播種量10~15公 斤,水稻收穫前3~5天撒播於稻株行間,隨即灌溉田區,俟田面濕潤 後排水,水稻收穫時將切割的稻稈覆蓋田區即可。乾旱地區每隔15天 灌溉一次,雨水充沛地區應注意排水。

於開花期間翻犁,每公頃生草產量可達20,000~30,000公斤。埃

及三葉草植體有效肥分鮮草含氮素0.48~0.56%、磷酐0.09~0.18%、 氧化鉀0.24~0.55%。每公頃生草量以25,000公斤,氮礦化率80%估 算,可供後作作物每公頃約96~112公斤氮素(約施尿素208~243公 斤或硫酸銨457~533公斤),磷酐18~36公斤/公頃(約施用過磷酸鈣 100~200公斤/公頃),氧化鉀48~110公斤/公頃(約施用氯化鉀80~ 183公斤/公頃)用量。掩施埃及三葉草綠肥作物,對後作作物之氮肥施 用,應較未種植埃及三葉草綠肥之肥培管理,減少2/3~3/4氮肥肥料 量或不施,且依後作作物生長植株反應,靈活調整氮肥用量施肥,避 免因施過量氮肥造成作物生育過於旺盛或倒伏而影響產量與品質。

埃及三葉草初期生育情形

埃及三葉草對橢圓形的白色頭花

▲曳引機掩施埃及三葉草殘株入土中

埃及三葉草開花初期生長情形

▲埃及三葉草根與根瘤粒形狀

▲埃及三葉草種子

油菜

油菜又名蕓苔(rape),屬於十字花科(Cruciferae)蕓苔屬(Brassica)植物,俗稱菜籽、油菜籽,可分為小油菜與大油菜兩種,為世界性重要四大油料作物之一。小油菜(Brassica campestris L.)又名中國油菜、東洋油菜、赤種油菜,為中國栽培之地方種。油菜主要分布於歐洲(法國、德國、瑞典及波蘭)、印度、中國、巴基斯坦、日本、加拿大等地區栽培較多,臺灣地區栽培的在來種油菜屬小油菜種,植株較小,種子細小,為早熟品種。大油菜(Brassica napus L.)又名西洋油菜、朝鲜油菜,臺灣地區栽培均為國外引進之品種,如新竹特1號,桃園3號、桃園4號等油菜品種,皆屬晚熟品種。油菜之植株及花苔為優良之蔬菜,種子榨油供食用及工業用。

油菜為一年生或越年生直立性草本作物,性喜溫暖濕潤氣候,對土壤肥貧之肥力的選擇不嚴,適應性很廣,耐鹽、耐濕、耐旱、耐寒等環境均能適應,以排水良好而土壤pH值5~8左右的砂壤土、壤土及粘質壤土等土壤,以土層深厚而肥沃的土壤最適宜栽培種植。因此,臺灣地區任何地區於秋冬裡作均可栽培。

於第二期作水稻收穫後栽培,每公頃撒播量6~9公斤,可視土壤肥沃度調整播種量,增減用量。在水稻收割前3~5天撒播於稻田行間,或於水稻收穫時將稻稈切數段,待3~5天太陽晒乾燥後,將油菜種子撒播,並引水灌溉,灌滿整個田區不要放水,讓水慢慢滲漏入土過程中使表土呈自然保水狀態即可,土壤濕潤保持適中,則有利於種子萌芽生長。油菜種子在土壤濕潤狀態下發芽生長,生育初期管理並酌以加施氮肥與磷肥,以促進油菜植株生長。因於,肥沃土壤田區油菜初期生長葉色濃綠,而貧瘠土壤田區因養分低致油菜生長不佳,此時則可施用氮素每公頃20~30公斤;磷酐20~30公斤,約100~150公斤/公頃含氮量高之1號或5號複合肥料,分1~2次施用,或可施單質肥料尿素(48~71公斤)或硫酸銨(95~142公斤)及過磷酸鈣(110~165公

斤),以促進油菜生長,增加掩施後養分供應量,施肥於土壤溼潤時施 用。

油菜生育期間主要有蚜蟲、小菜蛾、紋白蝶及擬尺蠖等蟲害,若 發生害蟲危害時可用90%納乃得可濕性粉劑3,000倍或25%陶斯松可濕 性粉劑1,000倍等防治。病害為黑斑病、露菌病等,用21.2%依滅列乳 劑1,500倍或23%亞托敏水懸劑2,000倍防治,以免危害鄰近十字花科蔬 菜,並避免成為附近田區冬季休閒期之病蟲源溫床。

掩埋油菜的適宜時期為開花著果期果莢飽滿時。土壤肥沃度及栽 培管理皆會影響油菜植株生草產量之高低。適宜施肥栽培管理每公頃 生草量約15,000~20,000公斤;如不施化學肥料採粗放栽培,植株生 草量約5,000~10,000公斤產量低。於油菜開花結莢飽滿期,其植體 營養成分累積最高峰,掩施後肥效最高。掩施後植物體發酵分解,產 生發酵熱對後作作物根部生長不利,因此,最遲在第一期水稻插秧前 15~20天耕犁掩埋入土壤中,使油菜植體能充分發酵分解,以利後作 作物之養分供給吸收。油菜植體鮮草含氮素0.21%、磷酐0.02%、氧 化鉀0.28%。每公頃生草量以20,000公斤,氮礦化率80%估算,可供 後作作物每公頃約34公斤氦素(約施尿素74公斤或硫酸銨162公斤), 磷酐3.2公斤/公頃(約施用過磷酸鈣18公斤/公頃),氧化鉀44.8公斤/公 頃(約施用氯化鉀75公斤/公頃)用量。油菜生育初期不施肥料或管理不 當,生長不良,果莢飽滿期之生草量調查在5,000~10,000公斤,可提 供每公頃氮素含量的8.4~16.8公斤(換算約施硫酸銨40~80公斤或尿 素18~37公斤),提供後作物養分吸收利用。掩施油菜綠肥作物後, 因其提供肥分較少,應依後作作物生長情形靈活調整增減肥料量,以 期能提供作物所需足夠養分,以避免因肥分不足而影響後作作物生育 與產量。

▲小油菜之種子

▲油菜植株生育情形

▲紋白蝶幼蟲危害情形

▲油菜植株耕犁掩埋浸水醱酵

▲油菜植株幼嫩期間摘心供食用

油菜開滿黃色花朵,形成一片花海

▲油菜長形果莢飽滿期為最佳掩埋期

▲油菜生長不良

蕎麥

蕎麥(Fagopyrum esculentum)別名甜蕎、花蕎、玉麥、三角麥等, 為蓼科(Polygonaceae)一年或二年生雙子葉之草本植物。蕎麥原產中 國東北黑龍江畔及西伯利亞貝加爾湖一帶都有其分布,臺灣有少量栽 培。臺灣地區栽培蕎麥分為蕎麥(Fagopyrum esculentum Meench 別名 甜蕎)與韃靼蕎麥(Fagopyrum tataricum L. Gaertner 別名苦蕎)二種,適 合綠肥作物栽培之品種如信濃一號、高砂種及臺中一號等。

蕎麥性喜冷涼濕潤的氣候,適合栽培範圍廣。生育初期需高溫濕 潤,但開花成熟期如遇高溫則結實不良。蕎麥生長期甚短,約二個月 左右,對土壤選擇不嚴,排水良好,疏鬆土壤皆可栽植。臺灣於10月 下旬至11月上旬最適播種,每公頃種子50~60公斤。蕎麥每公頃施肥 量氮肥為60~70公斤,磷肥40公斤,鉀肥50~70公斤用量。氮肥及鉀 肥分2次施用,分別為基肥50%及追肥(播種後25~30天撒施) 50%。 磷肥全量、氮肥及鉀肥半量(50%)於整地時當基肥施用,每公頃用硫 酸銨143~167公斤、過磷酸鈣222公斤及氯化鉀42~59公斤施用,剩 餘硫酸銨143~167公斤及氯化鉀42~59公斤應於播種後25~30天追肥 施用。蕎麥多於第二期作水稻收穫前3~5天或水稻收割後撒播種子, 田區灌滿水不要放掉,讓水慢慢滲漏入土壤中,土壤保持濕潤狀態, 俾利蕎麥種子發芽生長。不整地栽培於種子發芽後7~10天施第1次肥 料,播種後25~30天施第2次肥料。

蕎麥於開花盛期至瘦果飽滿間,為蕎麥生草產量及植體營養養 分累積高峰,乃最佳掩施時期。在施肥管理下之蕎麥生草產量每公頃 約10,000~18,000公斤,未施肥或粗放栽培管理蕎麥生草產量每公頃 約5,000~8,000公斤。一般蕎麥播種後2~3個月,開花結實期間養分 最高時,利用曳引機耕犁,掩埋入土壤中,引水灌溉促進植株殘體發酵釋出養分,一般植株殘體掩埋入土壤中,需經15~20天醱酵腐熟作用。因此,於第一期作插秧前20~25天前耕犁,掩埋入土壤中,使蕎麥植體能充分發酵分解,釋出養分供給後作作物養分吸收。

蕎麥鮮草含氮素0.44%、磷酐0.15%及氧化鉀0.32%,每公頃生草量以10,000~18,000公斤,氮礦化率80%估算,每公頃約可提供35.2~63.4公斤氮素(換算硫酸銨約168~302公斤或尿素約77~138公斤),磷酐12~21.6公斤(換算過磷酸鈣約67~120公斤),氧化鉀25.6~46公斤(換算氯化鉀約43~100公斤)用量。掩施蕎麥綠肥作物後,初期提供肥分較少,所以應依種植作物生長情形靈活調整增減肥料用量,以期能提供作物生長所需之足夠養分,以避免因掩施初期釋出肥分不足而使作物生長不佳影響產量。

水稻栽培管理技術手册

▲蕎麥種子呈三角稜形

蕎麥萌芽初期生長

▲莖頂端小分枝的葉腋生長花梗開花

▲蕎麥開花時呈一片雪白色花海

▲農田整地及灌水不均造成生長不佳

不整地播種蕎麥生長情形

▲生育期田間湛水致植株生長不良象

▲蕎麥瘦果成熟期,植株呈老化

水生綠肥作物栽培及利用—滿江紅

滿江紅(Azolla)為水生蕨類植物,在環境不適遇低溫時,耐寒性弱 之品系其植物體將產生紅色花青素(red anthocyanin),此為植物體由綠 色轉為紅色之故。因此,於養殖池水面會呈現一大片紅色滿江紅平舖 浮在水面上,非常好看,遠遠看去猶如在水稻田上舖了一面紅地毯, 故名「滿江紅」。我國古代即記載此種植物具有肥田之效果,並於明 朝末年(17世紀)水田即曾加以利用。滿江紅係優良水生綠肥並可提供 氮肥來源之一,其植體生長迅速且與水稻共作,為水田優良水生綠肥 作物之一。

滿江紅(Azolla)為滿江紅科(Azollaceae),滿江紅屬(Azolla)槐葉萍 目(Salviniales),俗稱紅萍或綠萍系蕨類植物(Filicopsida)。滿江紅分 布於美國、智利、玻利維亞、巴西、日本、阿根廷、墨西哥、澳大利 亞、紐西蘭、烏干達、剛果、蘇丹、泰國、越南、印度、菲律賓、中 國等地區皆有其蹤跡。

滿江紅植株特徵其根為不定根,產生在莖的下方,單生、細長、 懸垂於水中,新生根綠色,含有葉綠體,老化褐色並脫落。莖為輸送 養分和貯藏養分的地方,莖於側面形成側芽和分枝,莖與水面垂直, 浮在水面上生長。葉片2行互生、腹面深裂、背片露出水面為綠色、 能行光合作用及固氮作用,腹片面具有浮載、吸收養分及水分作用。 滿江紅葉內有固氮藍綠菌(Anabaena azollae)共生,具有極強的固氮 力,據Talley及Rains學者研究估計,滿江紅生長35天的固氮量約35公 斤/公頃。

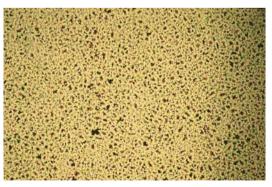
滿江紅的繁殖因其屬蕨類,故有孢子,並分成大小兩種孢子,孢 子囊果一般皆成對而生,小孢子囊果球形,內藏小孢子;大孢子囊果 卵形,較小,且孢子囊果非常罕見。而滿江紅主要還是靠無性生殖的 方式,由母株長出新芽迅速繁殖,折斷的枝條也會發育成新的植株。

滿江紅之生長環境在pH值3.5~10.0的範圍內,以pH 6.5~7.5最適

宜生長。滿江紅植體浮生於水面,放植水流緩慢之河流、湖泊、池溏 或水田中生長增殖。水流湍急和波浪、風浪大皆不利滿江紅生長,所 以要選擇避風地區靜態水面放植滿江紅,以水波浪流動較小池塘較適 合滿江紅養殖。滿江紅為標準的漂浮性植物,在臺灣地區部分的水田 或沼澤地中常有滿江紅的蹤跡。

滿江紅放植後生殖生長速率,約每2.60~4.93日可增殖一倍,以 放植0.5 kg/10m² 經60天生殖生長,每公頃可獲得35公噸以上之鮮 物,其乾物含氮率4.25%,含水率95%,經換算可得約74公斤氮素可 供給水稻營養吸收,故掩埋滿江紅可節省化學氣肥約60~75公斤/公 頃。要掌握滿江紅增殖速率,於水稻田裡先行施過磷酸鈣肥料後,放 植足夠數量滿江紅,以待增殖至足夠鮮草量再掩埋入稻田,經礦化釋 出養分以供應水稻生育期間所需之肥分。因此,一般於第二期作水稻 收穫後,稻田灌水集滿水再放滿江紅養殖,待次年第一期作插秧前耕 犁掩埋滿江紅殘體整地。掩埋前先將田裡的水放乾,再耕犁;將滿江 紅植體埋入土中醱酵,隔2天後再翻耕1次,將浮在水面之滿江紅植體 再埋入土壤中持續發酵分解礦化釋出養分。此外,於有機水稻栽培田 區除上述掩施提供養分外,插秧後於植株行間放植滿江紅養殖,由於 其生長迅速覆蓋整個農田表面,可有效抑制田區雜草滋生,減少有機 水稻田區除草工作。

滿江紅增殖密度過高時,會抑制水稻初期分蘖。因此,稻田放 植滿江紅後與水稻共作時,因滿江紅生殖快速,重疊覆蓋田面,致使 水稻生育初期空間不足使分蘖略受影響,但不影響水稻後期生育及產 量。


滿江紅掩埋釋出養分可做為水稻田基肥之肥分,滿江紅植體掩埋 後其養分礦化釋出過程可分三個高峰時期,即掩施後7天左右出現為 第1次釋出氮素高峰期,第2次於掩施後14~28天分解再釋出氮素高峰 時期,第3次釋出於掩施35天後持續緩慢分解礦化釋出氮素,以提供 水稻植株生育期所需之氮素。由於,滿江紅養分釋出之礦化過程具有

穩定而長效的特性,緩效提供水稻生育期之營養元素養分吸收利用。 滿江紅植體掩埋在土壤中需經1~2週分解釋放氮素,掩施後經20~30 天為提供水稻養分吸收利用獲益較大。稻田掩埋滿江紅後插秧,因需 經醱酵礦化釋出氮素稍晚(為緩效提供養分),因此,提早7~10天耕犁 掩埋發酵釋出養分,7於天後插秧之水稻,則可吸收利用養分不致影 響生長,而掩埋後立即插秧者,需在生育初期配合施少量氮肥,以補 足滿江紅殘體尚未釋出之肥分。

掩埋滿江紅可提高土壤有機質含量0.1~0.2%,並可減低土壤密實 性,促進土壤微生物活動,增加水稻有效分蘖數,提高稻作產量。其 土壤顏色會因有機質增加,色澤由灰色變深黑色,顯示滿江紅係優良 有機物源。

▲小孢子囊果

▲滿江紅植體之花色素轉變黃色

▲滿江紅在正常環境生長情形

▲滿江紅之花色素受氣候異常變色

▲滿江紅遇環境不適植體由綠轉紅色

▲滿江紅覆蓋抑制陽光照射

滿江紅放植於茭白筍園生長情形

▲稻田放植滿江紅覆蓋抑制雜草生長

掩施綠肥作物應注意事項

綠肥作物之植體為高效性之有機質肥料,綠肥作物栽培利用,一 般以直接翻犁掩埋入土中。目前農民栽培綠肥作物掩施方式不一,於 綠肥作物開花初期以乾耕犁掩埋或插秧前後掩埋,皆不利綠肥養分保 存及釋放。因此,建議農民於插秧前或後作作物栽培前約15~20天, 淺水灌溉耕犁掩施,有利於綠肥作物殘體發酵分解,以利後作作物之 吸收利用養分。同時,後作作物栽培生育期間所施肥料用量應將綠肥 殘體所釋放養分扣除,以免過量施肥造成後作作物營養過剩產生倒伏 及病蟲害危害加劇。惟掩施時應注意下列各點:

- (一) 掩埋生草量應視土壤性質來決定,砂壤土有機物分解迅速,用 量可多,粘土通氣較差則不宜過多,因其分解遲緩,易起還原 作用,產生有害物質,對作物不利。
- (二)綠肥作物掩施土中之最佳時期,以開花盛期最適宜,此時期含 氮量最多,莖葉且柔嫩多汁,易分解。

- (三)綠肥植體分解時加施石灰中和酸性,促進分解之效果。
- (四)綠肥植體耕犁掩埋深度愈深,對作物根系發育愈有利。
- (五)綠肥植體掩施後須經15~20日以上的分解,才可種植栽培其他 作物。

綠肥作物掩施整地情形

▲綠肥作物掩埋浸水情形

翻耕掩埋入土壤中

▲利用曳引機行第2次碎土耙平準備插秧

結 語

過去由於化學肥料價格低廉,農村勞力缺乏,使綠肥作物推廣受 到限制,近年來配合政府政策執行「推動合理化施肥措施綠肥作物栽 培利用推廣」計畫,利用冬季裡作農田休閒期種植油菜、苕子、埃及三 葉草與休耕期播種田菁、青皮豆及太陽麻等綠肥作物,為掩施後呈現最 經濟有效的土壤肥培管理方法,減少化學肥料的用量,增加土壤有機質 含量,改善土壤理化性質。休閒期或果園中播種豆科綠肥作物,與其共 生之根瘤菌固定空氣中游離氮氣,增加土壤中氮源。冬季裡作播種綠肥 可減少冬季蔬菜生產過剩之壓力,開花期可美化農村景觀,及提供養蜂 業之冬季蜜源等功能,配合農田休耕擴大綠肥作物種植,以維護土壤肥 力,美化農村田園景觀,保育農田永續生產,提升農產品產量及品質。